
Iowa State University

Senior Design May15-23

Final Report

Wireless Embedded Roadway Health
Monitoring

Authors:
Mitchell Balke
Brandon Maier
Johnnie Weaver
Brandon Wachtel
Tyler Fish
Christofer Sheafe
Trieu Nguyen

Clients:
Dr. Halil Ceylan

Dept. of Civil, Construction, and
Environmental Engineering

Advisors:
Dr. Daji Qiao

Dr. Jiming Song
Dr. Tie Qiu

Jeramie Vens

April 29, 2015

WERHM – Final Report EE492 May15-23

Contents

0 LIST OF ABBREVIATIONS AND ACRONYMS 3

1 EXECUTIVE SUMMARY 3

2 PURPOSE 3

3 DESIGN REQUIREMENTS 3

4 SUBSYSTEM REQUIREMENTS 4
4.1 COMMUNICATIONS . 4

4.1.1 SYSTEM REQUIREMENTS . 4
4.1.2 ANTENNA . 4

4.2 MICROCONTROLLER . 4
4.2.1 SYSTEM REQUIREMENTS . 4
4.2.2 FUNCTIONAL REQUIREMENTS . 5
4.2.3 NON-FUNCTIONAL REQUIREMENTS . 5

4.3 SENSOR TEMPERATURE/HUMIDITY . 5
4.3.1 SYSTEM REQUIREMENTS . 5
4.3.2 FUNCTIONAL REQUIREMENTS . 5
4.3.3 NON-FUNCTIONAL REQUIREMENTS . 5

4.4 POWER SUPPLY . 5
4.4.1 BATTERY . 5
4.4.2 POWER TRANSMISSION . 6
4.4.3 CHARGING CHIP . 7

4.5 BASE STATION . 7
4.5.1 SYSTEM REQUIREMENTS . 7
4.5.2 FUNCTIONAL REQUIREMENTS . 7
4.5.3 NON-FUNCTIONAL REQUIREMENTS . 7
4.5.4 DATA EXTRACTION . 7

4.6 ENCLOSURE . 7
4.6.1 FUNCTIONAL REQUIREMENTS . 7
4.6.2 NON-FUNCTIONAL REQUIREMENTS . 8

5 TESTING 8
5.1 COMMUNICATIONS . 8

5.1.1 AIR . 8
5.1.2 CONCRETE . 8

5.2 POWER . 8
5.2.1 BATTERY LIFE AND HEALTH . 8

5.3 DATA RETRIEVAL . 9
5.4 ENCLOSURE . 9

6 DETAILED DESCRIPTION 9
6.1 I/O . 10
6.2 INTERFACE . 10
6.3 HARDWARE . 10

6.3.1 MICROCONTROLLER . 10
6.3.2 RF TRANSCEIVER . 10
6.3.3 SENSOR . 10
6.3.4 FLASH MEMORY . 10
6.3.5 ENCLOSURE . 10

Page 1

WERHM – Final Report EE492 May15-23

6.3.6 CHARGING CHIP . 12
6.4 SOFTWARE SPECIFICATIONS . 12
6.5 SCHEMATICS . 12
6.6 IMPLEMENTATION ISSUES AND CHALLENGES . 13

7 PARTS LIST 14
7.1 PCB PARTS . 14
7.2 ENCLOSURE . 14
7.3 TRANSMITTER FOR CHARGING . 15

8 RESULTS 16
8.1 COMMUNICATION . 16
8.2 CHARGING . 16

8.2.1 POWER TRANSMISSION . 16
8.2.2 CHARGING CHIP . 17
8.2.3 BATTERY LIFE . 18

8.3 ENCLOSURE . 18

9 CONCLUSION 19

Appendices 20

A OPERATIONAL MANUALS 20
A.1 BASE STATION . 20
A.2 CHARGING . 20
A.3 ENCLOSURE . 20

B Alternative Project Plans/Designs 23

C Other Considerations or Mistakes 24
C.1 Charging Chip . 24
C.2 RF Charging . 24
C.3 Soldering . 24

D Team Contributions 25

E CODE 26
E.1 MAIN PCB CODING . 26
E.2 BASE STATION CODING . 55

References 66

List of Figures 67

Page 2

WERHM – Final Report EE492 May15-23

0 LIST OF ABBREVIATIONS AND ACRONYMS

CAD Computer Aided Design

EM Electromagnetic

FCC Federal Communications Commission

FIFO First-In First-Out

I2C Inter-Integrated Circuit

ISM Industrial, Scientific, and

LCD Liquid Crystal Display

PCB Printed Circuit Board

RF Radio Frequency

RTC Real Time Clock

SD Secure Digital

SPI Serial Peripheral Interface

USB Universal Serial Bus Medical

ABS Acrylonitrile Butadiene Styrene

1 EXECUTIVE SUMMARY

The goal for this project was to design, develop, and implement a working system, which collects and
monitors data that road surveyors normally complete. These tasks include sensor data sampling of concrete,
charging remote systems wirelessly, and transmitting data across multiple nodes to a collection box on the
side of the road. In addition, this system must be able to survive in concrete with minimal time intervals
for charging.

2 PURPOSE

Structural health monitoring systems evaluate structures for safety without requiring the presence of an
inspector. This saves time, money, and possibly lives as structural degradation can be detected much sooner
than manual inspection. Implementing such a system without wireless communication becomes too difficult,
fragile, and expensive to be feasible. A wireless sensor network makes the system low cost, have quick
installation times, and high system reliability.

3 DESIGN REQUIREMENTS

The new systems designed by this project as well as the improvements to the existing systems will all be
expected to meet the following criteria.

• Sensor can communicate between multiple nodes.

• The enclosure is water/shock resistant and can handle pressures induced by the solidification of concrete
and overhead traffic.

• Handles temperature ranges from -20°F to 140°F.

• The battery life of each unit will last a minimum of one year.

• Each charging of the battery will take a maximum of 12 hours.

• Must be able to transmit and receive data between nodes through concrete.

• Must encompass full automation of data aggregation, transmission, & receiving.

• Must be able to detect and re-route around non-functional nodes.

• The base station must store all data logs

• Log files must include date, time, nodes used, and information about the samples.

Page 3

WERHM – Final Report EE492 May15-23

4 SUBSYSTEM REQUIREMENTS

The wireless node network is composed of several subsystems with different responsibilities. Subsystems
in the node include communications, a micro-controller for processing, sensors, power transmitting circuits,
and a centralized base station to collect data. Communication is conducted wirelessy through the concrete
via RF transceivers. The micro-controller is tasked with scheduling measurements, controlling the flow of
communication between nodes and the base station, and controlling power states to conserve energy. Sensors
installed are responsible for measuring temperature and relative humidity.See Figure 1 for an overview of
the system.

Figure 1: System block diagram

4.1 COMMUNICATIONS

4.1.1 SYSTEM REQUIREMENTS

Communication between the nodes will be accomplished with an RF transceiver operating in the 433MHz
ISM band. Communication software must be designed for maximum reliability to prevent packet loss which
requires re-transmission. In addition, components for the communication circuit are selected to minimize
current draw as well as the size of the circuit.

4.1.2 ANTENNA

The antenna used for communication is an enclosed whip antenna operating at 433MHz. The antenna meets
the requirements of having sufficient reception in concrete, durability and low cost.

4.2 MICROCONTROLLER

4.2.1 SYSTEM REQUIREMENTS

The node is controlled by a low-power micro-controller augmented with a real-time clock. The micro-
controller communicates with the RF transceiver and the flash memory device via an SPI bus and with the
real-time clock via an I2C bus. Communication with the temperature and humidity sensor is done using
Sensirion’s proprietary serial communication protocol.

Page 4

WERHM – Final Report EE492 May15-23

4.2.2 FUNCTIONAL REQUIREMENTS

The micro-controller selected and all software running on it must be optimized for the lowest possible power
consumption to maximize battery life.

4.2.3 NON-FUNCTIONAL REQUIREMENTS

Once deployed, it will be impossible for the user to reprogram or reset the device, meaning system failure
is unacceptable. Device failure will result in data loss and will increase the power consumption of nearby
nodes affecting the overall lifespan of the network. The primary solution is designing the device as reliable
as possible with fault-tolerant software and performing energy-efficient optimization to system and network
functions in order to expand system life expectancy.

4.3 SENSOR TEMPERATURE/HUMIDITY

4.3.1 SYSTEM REQUIREMENTS

The micro-controller will interface with a Sensirion SHT10 temperature and humidity sensor to make the
required measurements.

4.3.2 FUNCTIONAL REQUIREMENTS

Sensor measurements must be taken in such a way as to minimize power consumption and not interfere
with other peripherals on the device. Communication with the sensor is done with a non-standard protocol,
therefore, a hardware solution does not exist. Sensor measurements can take up to 250ms so the software
solution must be designed to avoid performing this task while any other time-sensitive requirements exist to
the micro-controller.

4.3.3 NON-FUNCTIONAL REQUIREMENTS

There is no benefit to leaving the sensor in sleep mode while measurements are not being taken, so the
sensor will not be powered directly by the battery but rather by a general purpose pin on the micro-
controller, allowing the sensor to only be powered when a measurement needs to be taken. The software for
sensor communication must allow the correct amount of time for the sensor to initialize before starting any
communication.

4.4 POWER SUPPLY

The power source must charge the nodes wirelessly. This is due to the harsh conditions during the curing
process and setup of concrete that causes a high failure rate of wired connections. For the devices to be
wireless, it must be powered by an internal battery.

4.4.1 BATTERY

The battery chosen will use Lithium Ion technology due to Lithium Ion being able to function at temperatures
ranging from -20°F to 140°F. The battery must also be able to last at least one half year before needing
recharging. Due to the enclosure’s size constraints the battery package size needs to be small. The current
battery selected meets the requirements for both size and battery life. Estimations for the batteries life span
to be six to seven years of consumable power without the need of charging. Calculations for the life span of
the battery have it lasting between six and seven years.

Page 5

WERHM – Final Report EE492 May15-23

4.4.2 POWER TRANSMISSION

The node will use a method of wireless power transmission. Multiple methods can be used to charge the
circuit like RF, Thermo-electric, or Piezoelectric. However, the method that resulted in the best efficiency
through concrete was magnetic resonant coupling. Specifically, loosely magnetic coupling was chosen for
this project. With strong magnetic coupling, the nodes would require more length to the enclosure that is
outside of the size constraints of the project. This resulted in picking loose magnetic coupling since the coil
is able to fit inside the node and not strain the size requirements. The size of the receiving coil is bounded
by the node’s housing (5cm x 5cm).

Figure 2: Wireless Power Transmission

The transmitter was created to resemble a Royer Oscillator circuit with an LC tank consisting of a copper
coil and a few capacitors. The transmitter is driven by a DC power source with the source voltage limited
between 12V and 20V. Higher voltage will generate higher power at the coil that introduces an AC voltage
across the LC tank. The LC tank defines the oscillating frequency, which is approximately 2.189 MHz. The
transmitter’s circuit can be seen in Figure 3.

Figure 3: Transmitter - Royer Oscillator Circuit

The receiver consists of a copper coil and a capacitor that is tuned to the same resonant frequency of
2.189 MHz. The receiving coil will be a square to maximize the area and to meet the size requirements of
the enclosure. The same material as the transmitters coil was used. See Figure 4.

Page 6

WERHM – Final Report EE492 May15-23

Figure 4: Receiver

4.4.3 CHARGING CHIP

The charging chip must be able to charge the Lithium Ion battery to meet the 12 hour charging requirement.
The chip can be configured to disconnect the battery during low battery voltage conditions, but currently
this feature is not being used. This chip was chosen for being up to 95% efficient which is crucial for meeting
the 12 hour charging time requirement.

4.5 BASE STATION

4.5.1 SYSTEM REQUIREMENTS

The base station is a centralized subsystem of the network that receives information from the installed nodes
as well as serving as the location for data extraction.

4.5.2 FUNCTIONAL REQUIREMENTS

The base station has two duties: to initialize the network links upon installation and to receive and capture
data collected by nodes. Nodes are displaced from their initial locations during the concrete mixing process.
The base station detects how far away nodes are by sending power at different levels. Nodes are then assigned
”depth” levels based upon what power levels the base station is sending.

4.5.3 NON-FUNCTIONAL REQUIREMENTS

The base station is placed on the side of the road to be easily accessible to road workers. Since the base
station is not enclosed in the road, available power requirements are not defined. Additionally, the power of
the nodes can be configured through the base station. The base station can tell the nodes to transmit with
less power to conserve energy or to boost the signal strength for better communication. The base station
should also be able to change the frequency at which nodes take and send data. Additionally, the sample
rate is configurable from the base station to control the amount of time the nodes are active.

4.5.4 DATA EXTRACTION

The data is collected when the base station correctly receives a transmission sent by a node. The raw data is
stored within a microSD card which can be removed and interpreted at a work computer by a road worker.
For a more refined system the base station would relay information via cellular network.

4.6 ENCLOSURE

4.6.1 FUNCTIONAL REQUIREMENTS

Due to the nodes being placed in concrete the enclosure must be able to protect the internal circuitry from
the negative effects of the surrounding environment. The enclosure must be watertight to keep water and
humidity from the concrete mixing and pouring process from reaching the electronics. It must also be able
to protect the internal components from crushing pressures, around 30 psi, experienced during the paving
process. During the curing process, the concrete environment is very acidic and the enclosure must be able

Page 7

WERHM – Final Report EE492 May15-23

to resist the eroding nature of these acids. Finally, the enclosure must be able to withstand temperatures
ranging from -20°F to 140°F that the road would experience throughout the year in Iowa.

4.6.2 NON-FUNCTIONAL REQUIREMENTS

The entire node will be put into a concrete roadway, therefore, the enclosure must be large enough that
all of the internal electronics can fit within it but small enough not to cause structural integrity loss in the
portion of the road where it is embedded. The end goal for future products would be to have a node that
is on the scale of a piece of aggregate, around a half inch, allowing for the nodes to be tossed into cement
trucks during the mixing process. The cost of the enclosure must also be reasonable, in that it shall not drive
the node cost up to levels where large quantities of nodes being purchased would result in an unreasonable
amount of money being spent.

5 TESTING

Testing was subdivided into two sections: the efficiency of wireless charging and the successful transmission
and reception of data between nodes in the network. Wireless charging was tested by observing transmitted
power through concrete slabs. Communication was tested by monitoring the success rate of characters
transmitted over a large distance while the nodes were encased in concrete.

5.1 COMMUNICATIONS

Initial testing of communications was done by having two nodes talk to one another. The testing was done
first by transmitting a string of characters through air and checking if the information was correctly received.
Afterwards, the nodes were enclosed in concrete to observe if communication through concrete would work.

5.1.1 AIR

Two nodes were separated by a distance of a few feet in open air. One node was programmed to transmit
continuously with the other set to receive data and check for errors. The goal of this stage was to check that
success rate of communication and that error checking was functioning properly.

5.1.2 CONCRETE

Concrete testing was performed in two stages. First, two nodes were surrounded in concrete blocks and
tested in the same way as testing through air was performed. Second, a node was buried in a hole drilled
into a parking lot. This node was programmed to wake from sleep mode and test communication every five
minutes. When the node entered active mode, it sent the same packet five times at different output powers,
-5dBm, 0dBm, +5dBm, +7dBm, and +10dBm. The receiver first sat on the surface of the concrete, and
then in another hole 4 feet away to test longer distance communication through concrete.

5.2 POWER

For testing the power consumption of a node, current draw, the average lifespan of the battery under normal
operation, and the efficiency of the charging system will be measured. This will allow for calculations of
node and battery lifespan.

5.2.1 BATTERY LIFE AND HEALTH

To test the battery, measurements will be taken of the remaining battery life, in voltage, after 24 hours of
operation. This will give the estimated battery life and whether or not the size of the battery being used
should be increased. Ideally, measurements will be taken to see how exposing the battery to the two extremes
in temperature ranging from -20°F to 140°F affects the lifespan of the battery.

Page 8

WERHM – Final Report EE492 May15-23

5.3 DATA RETRIEVAL

The sensor in the device was verified for accuracy. It was exposed to the elements to test if it can sur-
vive pouring while providing accurate temperature and humidity readings. The accuracy can be tested by
placing it in a controlled environment and measuring the accuracy across different ranges of humidity and
temperature. A parking lot was chosen as the testing environment since nodes could be recovered with little
hassle while still emulating the expected conditions found in a roadway. Finally, verification that the sensor
can survive concrete pouring will be needed. The best way to perform this test is by subjecting it to high
temperature and acidity levels similar to those present in the curing process of concrete.

5.4 ENCLOSURE

The purpose of the enclosure is to protect the electronics contained within from the concrete environment
in which the system will be embedded. The enclosure must be able to protect the equipment from water
and acids within the concrete during the curing process, withstand the pressures induced while paving, and
endure the large temperature swings experienced throughout the year. ABS plastic was used as the material
for the enclosure due to its strength and resistance to acids.

Testing of the enclosure will be subject to a waterproofing test as well as a strength test. To test that
the enclosure is waterproof, a full enclosure will be built and submerged in concrete. After the concrete
has hardened, the enclosure will be dug up and opened to verify that no water has made it into the inside
of the enclosure. The strength test will replicate the pressures that the enclosure will experience while the
road is being paved. The enclosure will be set on a flat surface and weights will be added on top until the
desired weight and pressure are created. The enclosure will pass the test if no structural damage is seen
after removing the weights. See Figure 5.

Figure 5: Node encased in concrete after recovery

6 DETAILED DESCRIPTION

This section will lay out the main specifications set forth for the project by the team and advisers. It
will include sections on I/O specifications, interface specifications, hardware and software specifications,
simulations, implementation issues, and testing.

Page 9

WERHM – Final Report EE492 May15-23

6.1 I/O

The base station will serve as the only point of I/O for the user. Output generated by the base station will
be a feed from the network containing sensor data, the data can be stored in a file or outputted to stdio for
live viewing. There will be no continuous user input into the system, and the only time input to the system
is needed is when the user wants to change network parameters such as sampling frequency.

6.2 INTERFACE

The base station is a raspberry Pi running Raspbian (Linux) without a graphical user interface. It can be
interfaced with any traditional method of accessing Linux terminals. This includes connecting an external
HDMI display with keyboard, attaching a WiFi dongle, and connecting via SSH. When deployed for data
collection, data gathered from the network can be stored onto the raspberry’s SD card or a USB flash drive.

6.3 HARDWARE

6.3.1 MICROCONTROLLER

The choice of micro-controller is the Texas Instruments MSP430F2122. This device is ideal for our application
due to its low power consumption, application flexibility, and large amount of RAM. The MSP430 has an
active power consumption of 250µA, standby of 0.7µA, and 4KB of flash memory. The MSP430 supports
many features that are important to the project like I2C, SPI, configurable clocks, and a large supply of
GPIO pins (24).

6.3.2 RF TRANSCEIVER

We decided upon the use of the Texas Instruments CC1101 for wireless communication. The device operates
in the ISM 433MHz frequency band. This component was selected for relatively low-power consumption,
flexibility, and minimal required external passive components. The benefit of operating in an ISM band is
that a license is unneeded for transmissions with power less than a watt. Additionally, operating at 433MHz
offers the least amount of signal and power attenuation while being the lowest frequency device commercially
available. A simple whip-antenna designed for 433MHz communication was chosen based on price, size, and
relatively good performance.

6.3.3 SENSOR

The Sensirion’s SHT10 is used for the temperature and humidity measurements. The device offers accurate
readings and a package that suits our enclosure and is in an acceptable price range. The SHT10 is accurate
to within 4.5RH and 0.5°C, has a footprint of 7.5x5mm, and costs $7. Higher accuracy sensors are available,
but cost in excess of $25.

6.3.4 FLASH MEMORY

The Microchip SST25VF040B 4Mb serial flash memory chip is used to store local sensor data before being
sent to the base station.This device was chosen for its low cost and SPI-compatibility. To conserve power,
this chip was chosen as flash memory is non-volatile, so it can be powered down when not being accessed.
The chip is powered by a pin on the micro-controller rather than the battery so that it can be powered off.

6.3.5 ENCLOSURE

The enclosure was 3-D printed using ABS plastic. The material protects the circuitry from the concrete,
but does not interfere with the wireless communications or inductive charging. Plastic was chosen because
it contains no conductive materials that would interfere with communication and charging transmission.

Page 10

WERHM – Final Report EE492 May15-23

There are two different designs for the enclosure, one for charging and one for non-charging. The top
and bottom parts of the enclosure have a thickness of 0.2 inches and when the two parts are put together,
the thickness of the four walls is the same. The sizes and designs for both inner and outer parts of the
enclosure, for both charging and non-charging designs, can be seen in Figure 6, Figure 7, and Figure 8.

Figure 6: Top view of design for both charging and non-charging enclosures

Figure 7: Front view of design for non-charging enclosure

Figure 8: Front view of design for charging enclosure

Page 11

WERHM – Final Report EE492 May15-23

6.3.6 CHARGING CHIP

The chip used for charging the Lithium Ion is Linear Technologies LTC4121. This chip was chosen for its
high efficiency. The chip is up to 95% efficient. The chip also has a wide input voltage range of 4.4V to 40V
which is needed when charging with inductive coils. If the coils get too close together, the voltage will rise
and the charging chip must be able to handle this high voltage without burning up.

The chip is also ideal for being configurable. The float voltage of the battery was configured to be 3.7
volts. This was to protect the micro-controller, antenna, and other circuitry from higher voltages than 3.7
volts. See Figure 9 for schematic.

Figure 9: Charging Chip Circuitry

6.4 SOFTWARE SPECIFICATIONS

Software is optimized for lowest possible power consumption on battery powered devices. This is to maximize
lifetime, as the node needs to be able to survive as long as possible on one charge. This is achieved by
minimizing the time spent with the device awake. For instance no complex calculations are done by the
microcontroller e.g. floating-point or math.h functions. In order to further decrease active run-time, static
variables are preferred over passing function values to decrease function switching time and allow the compiler
to further optimize the code.

Similarly, the software is optimized to have a small memory size. The MSP430 only has 512B of RAM
available, so no large data-structures are used in the software. To allow for the storage of sensor data, a
secondary flash memory is used.

6.5 SCHEMATICS

The hardware schematics for the Royer oscillator based transmitter and the receiving system can be seen in
Figure 3 and Figure 4 respectively in section 4.4.3.

The PCB schematics were made in NI Ultiboard. Figure 10 shows the schematic for the non-charging
PCB while Figure 11 shows the charging PCB.

Using Multisim, the PCBs were created for both the charging and non-charging variations. Figure 12 shows
the Multisim diagram for the charging PCB.

Page 12

WERHM – Final Report EE492 May15-23

Figure 10: Non-Charging PCB

Figure 11: Charging PCB

Figure 12: Multisim schematic for the charging PCB.

6.6 IMPLEMENTATION ISSUES AND CHALLENGES

One main challenge of implementation for the nodes is survivability during the concrete pouring and curing.
During the concrete pouring, there will be high temperatures and pressures as well as strong vibrations which
can cause stress to the PCB and enclosure. After being installed, the acidity of the concrete can corrode the
electronics and effectively destroy the node. The enclosure was designed specifically to addressed these issues.

Signal attenuation in the concrete was another challenge for the system. The signal loss increases dras-
tically in concrete compared to air, which may cause the system to transmit data repeatedly until success.
This will cause the batteries to drain faster than desired. The nodes are designed to transmit data and wait
for a data received signal. If the node does not receive the signal, it will re-transmit at a higher output
power and repeat the process until transmission is received.

Page 13

WERHM – Final Report EE492 May15-23

7 PARTS LIST

7.1 PCB PARTS

For this project, there were two separate designs which require to different parts lists. The two designs
consisted of a non-charging pcb and a charging pcb. These two circuits only differ by the addition of
the charging chip, receiving coil, and the additional passive components required for charging. The best
representation of the two different designs can be seen in Figure 10 and Figure 11. Figure 13 shows each
component and pricing.

Figure 13: Parts List

7.2 ENCLOSURE

The following parts lists cover the current designs of the enclosure for both the charging and non-charging
models. The primary expense is the cost for 3-D printing both the inner and outer parts of the enclosure.
The design for our system needed to be small, therefore we needed to have an enclosure that would perfectly
fit the electronics that we were putting into the concrete. To do this, we were unable to find and purchase
a simple case to modify to our needs and thus had to design and 3-D print the enclosures. This uniqueness
required for the enclosure is what caused the price for the enclosure to go up. We purchased a GoreTex
repair kit to use as the mesh for our design. The cost of the kit was low and many meshes can be made from
a single kit, so an approximation of the total cost based on the percentage of the material used was made
for the cost of the mesh materials. This approximation can be seen in the two enclosure parts lists. Epoxy
was also purchased to hold the enclosure pieces together and again, only a small amount is needed to create

Page 14

WERHM – Final Report EE492 May15-23

a single enclosure and multiple enclosures can be made from a single tube of epoxy. An approximation on
the cost of the epoxy per node is made in the parts lists. See Figure 14 and Figure 15.

Figure 14: Parts List for Non-Charging Enclosure

Figure 15: Parts List for Charging Enclosure

7.3 TRANSMITTER FOR CHARGING

The following parts list covers the current design of the power transmitter circuit. Most of the passive
components were rated for a higher current draw in case of higher power transmission being required. This
will cause the circuit to be a bit more expensive. However some of the passive components could be cheaper
if the current design was modified. The circuit only requires a few amperes ranging from 200mA to 1A
while some of the component ratings are set for 3A to 5A. Additionally the relay can be swapped out for an
ordinary switch as long as it’s acceptable for the appropriate ratings.

The transmitter cost is not included in the total cost since charging is a separate design of the current
project, which is wireless communication through concrete. Figure 16 shows the individual components
along with each individual prices and total cost.

Figure 16: Transmitter Part List and Cost

Page 15

WERHM – Final Report EE492 May15-23

8 RESULTS

8.1 COMMUNICATION

Testing different output powers for communications testing through concrete showed packet success rates
that greatly decreased as output power was lowered. Still, as shown in Figure 17,the output power was found
to be +5dBm or higher, packet success rate is high enough that total data loss should be rare in a flooding
routing scheme.

Figure 17: Packet success rate for different output powers

8.2 CHARGING

8.2.1 POWER TRANSMISSION

The receiver circuit needs to have a matching resonant frequency of 2.189 MHz. This is done with using the
following equation.

Freq =
1

2 ∗ π ∗
√
L ∗ C

Where L is the total inductance seen from the coil and C is the total capacitance. It is easier to find C after
the coil is made. Currently the coil requires 26.7nF to get 2.189 MHz.

A load analysis was done to determine the best resistive load that should be applied to the charging circuitry.
The ideal load was found to be about 100Ω as shown in Figure 18. With this load, the maximum power
received was approximately 23 mW at a distance of four inches.

Page 16

WERHM – Final Report EE492 May15-23

Figure 18: Receiver load analysis at four inches

Since loosely coupled magnetic resonant was implemented, the efficiency decreases drastically as distance
increases as shown in the Figure 19. The efficiency was defined as power receiving at 100Ω divided by the
power output at the source. The test was carried out with 12V power supply. Current at the source was
measured to determine the transmitting power. Voltage across the load was measured to determine the
power at the receiver.

Figure 19: Efficiency versus distance with 100Ω load

After all the components were added to the PCB with charging, additional testing was done. Due to
the passive components of the charging chip, the matching resonant frequency of the receiver was altered.
Addition capacitance was added to the circuit. Approximately 5nF were needed for an ideal matching
resonant frequency of 2.189 MHz. The total capacitance of the receiver circuit now requires 30 nF. Also, the
resistive load of the entire circuit gives a much higher voltage to distance ratio.

8.2.2 CHARGING CHIP

Once the battery was connected to the circuit, current draw for the charging circuit was very minimal. This
was found by putting the micro-controller into sleep mode, that way only the charging chip would be drawing

Page 17

WERHM – Final Report EE492 May15-23

current.

Then the charging coils were connected to the circuit. The only way available to check if the battery
was charging was to periodically check the voltage. The battery started out at 3.0 volts and after a little
over an hour of charging, the battery increased to 3.2 volts meaning the battery was successfully being
charged.

8.2.3 BATTERY LIFE

Battery life was determined by adding the average current draw of each active component on the node.
The current draw for each component in each of its states is listed below in Figure 20, to evaluate an
approximate value for battery life. State times for the CC1101, by far the largest impact on overall battery
life, are estimated from the number of packets to be sent and the programmed baud rate. State times for other
components are estimated from the speed of serial communication programmed into the micro-controller.
This will determine the amount of mAh used per day by the node.

Figure 20: Battery life expectancy and current draw

8.3 ENCLOSURE

The enclosure was put through both a weight test to verify that it would be able to stand up to the pressures
that will be experienced during the paving of the concrete. For the enclosure to pass the weight test, it
needed to be able to withstand about 50 pounds of weight resting on top of it. For the weight test, the en-
closure was placed on a flat surface and weights were added one by one until the desired weight was reached.
The enclosure was able to hold up over 50 pounds of weight and over 150 pounds when somebody stood on
top of it with no signs of cracking due to stress. Therefore, the enclosure passed the weight survivability test.

The enclosure was also subject to a waterproofing test to verify that it would keep wet concrete and water
from reaching the electronics within during the concrete pouring and curing processes. After applying a
mesh, water was dripped to cover the entire mesh. The mesh was able to keep the water out and there
were no signs of leaks. After putting the entire enclosure together, water was poured along the seals that

Page 18

WERHM – Final Report EE492 May15-23

were made with the epoxy and again, no water was able to penetrate the enclosure. The enclosure was also
subject to wet concrete during the communication testing. After retrieving the enclosure from the concrete
and opening it to take out the PCB and battery, there were no signs of water or concrete inside of the
enclosure. Looking at the enclosure after both of these tests, it is safe to say that the enclosure passed the
waterproofing test.

9 CONCLUSION

Future applications can extend to embedded sensors in other concrete structures besides roadways. Wireless
networks can be implemented in bridges and underground passages. Monitoring the health of these structures
can prevent fatal accidents and provide accurate scheduling for maintenance. Additionally, the sensors can
be used to test and refine different concrete composites for better structures. Implementing these node
networks becomes more feasible as the project becomes more large scale; the bulk pricing of parts reduces
the cost per node, installation and maintenance is cheap, and the structure is less likely to be replaced early
which all saves money. Overall, the wireless network offers an economic form of structural supervision.

Page 19

WERHM – Final Report EE492 May15-23

Appendices

A OPERATIONAL MANUALS

A.1 BASE STATION

Step 1
Before starting the base station, setup all nodes that will be in the network.

Step 2
Establish a connection to the base station, this can be done in numerous ways. An HDMI display and
keyboard can be directly plugged into the station. If it has internet access an SSH connection can be
established with it.

Step 3
In the base station’s terminal, navigate to the project directory for the base station. Run the executable
at “src\base station”. The Base Station will automatically perform configuration of the network.

A.2 CHARGING

Step 1
Plug in the DC power source (12V to 20V). If the distance between the transmitter coil and the receiver
coil is within 2.4 inches, the power supply voltage should be set to 12V. If the distance is larger (up to
3.2 inches), the power supply voltage should be at 18V.

Step 2
Place the transmitter directly on top of the receiver node.

Step 3
Turn the transmitter on by flipping the switch. An LED on the switch should light up indicating that
the transmitter is on.

A.3 ENCLOSURE

Step 1
Lay 2 to 3 layers of nylon mesh over the outside of the sensor opening on the inner box of the enclosure.
Take a slightly larger piece of the ripstop nylon patches and put it over the nylon mesh and press down
firmly, removing any air bubbles from beneath the patch. Run seam seal along the outside edge of the
nylon patch to seal to the enclosure. See Figure 21. Caution: The seam seal is toxic. Avoid directly
breathing the fumes that come from the bottle of seam seal.

Figure 21: Nylon mesh covering sensor opening

Page 20

WERHM – Final Report EE492 May15-23

Step 2
Screw #6-32 by 3/8 inch machine screws through each of the four (or three if working with a charging
node) mounting holes on the PCB.

Step 3
Lay the battery inside of the inner enclosure between the pegs with the wires of the battery going away
from the sensor opening.

Step 4
Place the PCB into the enclosure making sure that the mount for the sensor is facing towards the
sensor opening. Push each one of the screws into their respective peg until the PCB and battery are
held in place.

Step 5
Place the sensor against the inside of the sensor opening and apply epoxy around the edge of the
sensor. This will hold the sensor in place as well as create an airtight seal between the opening and
the sensor itself. Wait 5 minutes for the epoxy to set before progressing to step 6. If working with the
non-charging node, proceed to step 7. Caution: Avoid breathing the epoxy fumes as much as possible.

Step 6 (For Charging Node Only)
Inside of the inner piece of the enclosure, place the inductive coil above the sensor, along the rim of
the inner enclosure. Apply epoxy at the corners to help hold the coil in place. Wait 5 minutes for the
epoxy to set before progressing to step 7.

Step 7
Take the outer half of the enclosure and rotate it 90 degrees so that the sensor openings are 90 degrees
apart from one another. See Figure 22.

Figure 22: Locations of sensor openings with 90 degree rotation

Step 8
Apply epoxy along the top edge of the walls of the inside piece of the enclosure. Put the inside half of
the enclosure into the outer half. IMPORTANT - Position the two halves of the enclosure so that
the walls that do not contain a sensor opening are as close to one another as possible. This will create
an air gap between the walls of the two halves of the enclosure where the sensor openings are located.
Hold the two pieces of the enclosure together firmly for about 30 seconds to allow the epoxy to ad-

Page 21

WERHM – Final Report EE492 May15-23

here to both parts of the enclosure. Let the epoxy sit for 5 minutes before starting step 9. See Figure 23.

Figure 23: Air gap between enclosure walls

Step 9
Apply epoxy along the bottom of the enclosure where the walls of the two pieces meet as well as along
the air gap to create an airtight seal. Scrape away any excess epoxy to create a smooth bottom. Let
the enclosure sit for 5 minutes while the epoxy hardens before continuing with any work on the node
itself.

Page 22

WERHM – Final Report EE492 May15-23

B Alternative Project Plans/Designs

There was another design that was considered for the communications and power charging systems. One
idea was that a system of receiver nodes would be placed in the ground beneath the concrete before pouring.
See Figure 24 for alternate design concept. These nodes would be able to be wired to a constant power
supply as well as the base station. With this design, there could be constant power transferred to the sens-
ing nodes allowing for infinite charging times. The receiver nodes would be paired with a sensor node and
would receive the data being sent. This would allow for smaller distances needing to be penetrated by both
the charging and communication systems. The buried nodes having communication wires would greatly
increase the success rate of data transmission as well as allow the transceivers to use lower power for sending
data. The ground in which the receiving nodes would be placed is extremely hard and would require digging
equipment to implement this system. This is the main reason that the design was not implemented because
it would be time consuming, expensive, and difficult.

Figure 24: Concept sketch of an alternate way to charge and retrieve data

Another idea for energy harvesting was to implement a radio frequency patch antenna that would receive
radio waves from a transmission antenna to generate energy for the nodes. This as well as the inductive
coils were researched and tested before a design was chosen for the charging system. There were a few issues
with the RF antenna that caused it to be taken out of the design. Firstly, the patch antenna that would
be needed for the node was too large. Second, the inductive coils could be reduced in size which would
cause less flux to penetrate the receiving coil, however, reducing the antenna size would change the harmonic
frequency of the antenna. Both of these issues helped in the decision to implement inductive coils as the
energy harvesting system for the nodes.

Page 23

WERHM – Final Report EE492 May15-23

C Other Considerations or Mistakes

C.1 Charging Chip

During initial testing of the charging circuit, the prototype charging circuit was used to charge the testing
battery. Ten minutes later, there was a faint smell of burning electronics and then the chip sparked and
caught fire momentarily. The circuit was immediately disconnected and completely re-designed. To prevent
further fire hazards, Linear Technologies was consulted to find the best LI-ION charging IC to fit our needs.

During Testing of the charging circuit, it was discovered that the charging IC was placing a float volt-
age of 4.2 volts over the battery. The circuit was designed to have a float voltage of 3.7V. The conclusion
was that an incorrect charging chip IC was received. There are two versions of the charging IC, with one
version having a predetermined float voltage of 4.2 volts.

C.2 RF Charging

During the design phase, battery charging via RF waves in the 915MHz band was considered[2].The receiving
antenna was a quasi-microstrip antenna. The antenna was composed of two conducting, rectangular planes
-with small center holes- separated by an air gap.The top plane was designated the conducting plane and
the bottom the ground. A stripped coaxial cable was inserted within the holes while the outer ground wires
were soldered to the bottom. The conducting portion of the cable was soldered to the top plane. The end
of the cable, with sma connector intact, would lead to the battery charging circuit.
Inductive charging was decided over RF charging on the merit of efficiency. Waves at higher frequencies
attenuate faster traveling through concrete; in order to charge the battery, the charging circuit requires a
threshold current in order to operate.

C.3 Soldering

Size constraints for the node, required the use of surface mount components, which in turn required re-flow
soldering for assembly. None of the members of the group had any experience with this process or with
components this small, so mistakes in assembly occurred a number of times and set back development. The
majority of theses mistakes were from applying too much solder paste. This caused the components to shift
in the oven and sometimes even going vertical, pins becoming bridged, and aligning the QFN integrated
circuits.

Page 24

WERHM – Final Report EE492 May15-23

D Team Contributions

The following Figure 25 is a representation of each individuaĺs total contributed hours throughout the year
of senior design. Figure 26 shows the total hours per individual along with the total amount of time.

Figure 25: Individual Contributed Hours

Figure 26: Individual Contributed Hours and Total Time

Page 25

WERHM – Final Report EE492 May15-23

E CODE

E.1 MAIN PCB CODING

/∗
∗ main . c
∗/

#inc lude <msp430 . h>
#inc lude ” s p i . h”
#inc lude ” cc1101 . h”
#inc lude ” f l a s h . h”
#inc lude ” m i c r o c o n t r o l l e r . h”
#inc lude ” sht10 . h”

#d e f i n e TX 1

#d e f i n e t x s i z e 62

v o l a t i l e unsigned char t i m e r f l a g = 0 ;
v o l a t i l e unsigned char r x f l a g = 0 ;
v o l a t i l e unsigned char temp , humidity ;
v o l a t i l e i n t beacon count ;

i n t main (void) {

WDTCTL = WDTPW + WDTHOLD;

mcu setup () ;
s p i s e t u p () ;
// f l a s h s e t u p () ;
c c 1 1 0 1 c o n f i g (0 x02 , 0x00) ;
CC1101 set output power (CC PWR 7) ;

temp = 0 ;
humidity = 0 ;
beac on inv t e rva l = 5000 ;

l e d f l a s h () ;
l e d f l a s h () ;
l e d f l a s h () ;

//Send packets

t i m e r f l a g = 0 ;
beacon count = 0 ;

b u f f e r [0] = t x s i z e ;

// Broadcast packet
b u f f e r [1] = 0xFF ;

Page 26

WERHM – Final Report EE492 May15-23

i n t i ;
f o r (i = 2 ; i < t x s i z e + 1 ; i++) {

b u f f e r [i] = i − 1 ;
}

CC1101 strobe (CC SFTX) ;

whi l e (1) {

// I f RX over f l ow
i f ((CC1101 strobe (CC SNOP) & 0x70) == 0x60) {

CC1101 strobe (CC SIDLE) ;
CC1101 strobe (CC SFRX) ;

}

CC1101 strobe (CC SRX) ;

i f (t i m e r f l a g) {

//Get temperature and humidity measurements
SHT ON;
temp = read temperature () ;
humidity = read humidity () ;
SHT OFF;

CC1101 wake () ;

// Packet ID as cur rent t imer value

unsigned char id = TA0R & 0x0F ;
b u f f e r [2] = id ;

b u f f e r [3] = temp ;
b u f f e r [4] = humidity ;

cc1101 send packet (bu f f e r , t x s i z e) ;
l e d f l a s h () ;

beacon count++;
t i m e r f l a g = 0 ;

r x p a c k e t i d s [rx index] = id ;
rx index++;
i f (rx index > 15){

rx index = 0 ;
}

} e l s e i f (r x f l a g){

Page 27

WERHM – Final Report EE492 May15-23

// Receive packet from CC1101
cc1101 rcv packe t (bu f f e r , &r x s i z e) ;
r x f l a g = 0 ;

unsigned char i d i n = b u f f e r [1] ;
r x p a c k e t i d s [rx index] = i d i n ;
rx index++;
i f (rx index > 15){

rx index = 0 ;
}

i n t i ;
char r e c e i v e d = 0 ;

f o r (i = 0 ; i < 16 ; i ++){
i f (i d i n == r x p a c k e t i d s [i]) {

r e c e i v e d = 1 ;
}

}

i f (r e c e i v e d == 0){
//Check i f t h i s packet has been to t h i s node , i f not , forward i t
i n t j ;
f o r (j = r x s i z e −1; j > 0 ; j−−){

b u f f e r [j] = b u f f e r [j −1] ;
}
b u f f e r [0] = t x s i z e ;
cc1101 send packet (bu f f e r , t x s i z e) ;

}
}

b i s S R r e g i s t e r (LPM1 bits + GIE) ; //Put uC to s l e e p
}

whi le (1) ;
}

// Port 1 i n t e r r u p t s e r v i c e rou t in e
#pragma vecto r=PORT1 VECTOR

i n t e r r u p t void Port 1 ISR (void)
{

P1IFG &= ˜GDO2;
r x f l a g = 1 ;

}

#pragma vecto r = TIMER0 A0 VECTOR
i n t e r r u p t void TIMERA0 ISR() {

Page 28

WERHM – Final Report EE492 May15-23

s t a t i c i n t t imer count = 0 ;
t imer count++;

i f (t imer count > beac on inv t e rva l) {
t imer count = 0 ;
t i m e r f l a g = 1 ;
b i c S R r e g i s t e r o n e x i t (LPM1 bits) ;

} e l s e {
t i m e r f l a g = 0 ;

}

}

Page 29

WERHM – Final Report EE492 May15-23

/∗
∗ m i c r o c o n t r o l l e r . h
∗/

#i f n d e f MICROCONTROLLER H
#d e f i n e MICROCONTROLLER H

#d e f i n e LED PIN BIT3
#d e f i n e LED ON P1OUT |= LED PIN
#d e f i n e LED OFF P1OUT &= ˜LED PIN

#d e f i n e WDT HOLD WDTCTL = WDTPW + WDTHOLD
#d e f i n e WDT RESET WDTCTL = WDTPW + WDTCNTCL

#d e f i n e FLASH ON P2OUT |= BIT3
#d e f i n e FLASH OFF P2OUT &= BIT3

unsigned char r x p a c k e t i d s [1 6] ;
i n t rx index = 0 ;

v o l a t i l e unsigned i n t bea con inv t e rva l ;

void mcu setup () ;

/∗ Sleep mode with i n t e r r u p t wakeup ∗/
void mcu s l e ep g i e () ;

/∗ Wait f o r i n t e r r u p t wakeup ∗/
void mcu wait g ie () ;

void l e d f l a s h () ;

#e n d i f /∗ MICROCONTROLLER H ∗/

Page 30

WERHM – Final Report EE492 May15-23

/∗
∗ M i c r o c o n t r o l l e r . c
∗/

#inc lude <msp430 . h>
#inc lude ” m i c r o c o n t r o l l e r . h”
#inc lude ” sht10 . h”
#inc lude ” cc1101 . h”

#d e f i n e INTERRUPT PRAGMA

void mcu setup () {
/∗ Stop watchdog t imer ∗/
WDTCTL = WDTPW | WDTHOLD;

/∗ 1MHZ c lock ∗/
BCSCTL1 = CALBC1 1MHZ;
DCOCTL = CALDCO 1MHZ;

/∗ TimerA c o n f i g
∗ −Source from ACLK
∗ −Up mode
∗ −Enable TimerA i n t e r r u p t
∗/

TACCR0 = 32768;
TACTL = TASSEL 2 + MC 1 ;
TACCTL0 |= CCIE ;

P1DIR |= LED PIN ;
P1OUT = 0 ;

P2DIR |= SCL PIN + SHT VCC;
P2REN |= SDA PIN ;

P2DIR |= BIT3 ;
P2OUT |= BIT3 ;

P1IE |= GDO2;
P1IFG ∗= ˜GDO2;

i n t i ;
f o r (i = 0 ; i < 16 ; i ++){

r x p a c k e t i d s = 0 ;
}

/∗ Enable i n t e r r u p t ∗/
b i s S R r e g i s t e r (GIE) ;

}

void l e d f l a s h () {

Page 31

WERHM – Final Report EE492 May15-23

v o l a t i l e char debug = 1 ;

i f (! debug){
re turn ;

}

i n t j = 6 ;
f o r (; j != 0 ; j−−) {

v o l a t i l e unsigned i n t i ;
P1OUT ˆ= LED PIN ;

d e l a y c y c l e s (30 000) ;
}
P1OUT &= ˜LED PIN ;

}

Page 32

WERHM – Final Report EE492 May15-23

/∗
∗ cc1101 . h
∗
∗ Created on : Dec 3 , 2014
∗ Author : mdbalke
∗/

#i f n d e f CC 1101 H
#d e f i n e CC 1101 H

#d e f i n e CS ENABLE (P1OUT &= ˜CS)
#d e f i n e CS DISABLE (P1OUT |= CS)

#d e f i n e CC1101 MAX FIFO 64

// D e f i n i t i o n f o r SPI l i n e s on port 1
//#d e f i n e CS BIT5
#d e f i n e GDO0 BIT6
#d e f i n e GDO2 BIT7

#d e f i n e MAX RXFIFO 64
#d e f i n e MAX TXFIFO 64

// CC1101 SPI Header : (R/ !W) + (Burst) + (A5−A0)
#d e f i n e CC HEADER RW BIT7 // Read / ! Write
#d e f i n e CC HEADER BURST BIT6 // Burst / ! S i n g l e

#d e f i n e CC STATUS FIFO(x) (x & 0b00001111)
#d e f i n e CC STATUS STATE(x) (x & 0b01110000)

/∗
∗ S i n g l e TX FIFO 0x3F 0b00 111111
∗ Burst TX FIFO 0x7F 0b01 111111
∗ S i n g l e RX FIFO 0xBF 0b10 111111
∗ Burst RX FIFO 0xFF 0b11 111111
∗/

// PATABLE (0 dBm output power)
// char paTable [] = {0x51 } ;
// char paTableLen = 1 ;

v o l a t i l e unsigned char b u f f e r [6 4] ;
v o l a t i l e unsigned char s ta tus 1 , s t a t u s 2 ;
v o l a t i l e unsigned char s t a t u s r e g ;

// Conf igurat ion R e g i s t e r s
#d e f i n e CC IOCFG2 0x00 // GDO2 output pin c o n f i g u r a t i o n
#d e f i n e CC IOCFG1 0x01 // GDO1 output pin c o n f i g u r a t i o n

Page 33

WERHM – Final Report EE492 May15-23

#d e f i n e CC IOCFG0 0x02 // GDO0 output pin c o n f i g u r a t i o n
#d e f i n e CC FIFOTHR 0x03 // RX FIFO and TX FIFO t h r e s h o l d s
#d e f i n e CC SYNC1 0x04 // Sync word , high byte
#d e f i n e CC SYNC0 0x05 // Sync word , low byte
#d e f i n e CC PKTLEN 0x06 // Packet l ength
#d e f i n e CC PKTCTRL1 0x07 // Packet automation c o n t r o l
#d e f i n e CC PKTCTRL0 0x08 // Packet automation c o n t r o l
#d e f i n e CC ADDR 0x09 // Device address
#d e f i n e CC CHANNR 0x0A // Channel number
#d e f i n e CC FSCTRL1 0x0B // Frequency s y n t h e s i z e r c o n t r o l
#d e f i n e CC FSCTRL0 0x0C // Frequency s y n t h e s i z e r c o n t r o l
#d e f i n e CC FREQ2 0x0D // Frequency c o n t r o l word , high byte
#d e f i n e CC FREQ1 0x0E // Frequency c o n t r o l word , middle byte
#d e f i n e CC FREQ0 0x0F // Frequency c o n t r o l word , low byte
#d e f i n e CC MDMCFG4 0x10 // Modem c o n f i g u r a t i o n
#d e f i n e CC MDMCFG3 0x11 // Modem c o n f i g u r a t i o n
#d e f i n e CC MDMCFG2 0x12 // Modem c o n f i g u r a t i o n
#d e f i n e CC MDMCFG1 0x13 // Modem c o n f i g u r a t i o n
#d e f i n e CC MDMCFG0 0x14 // Modem c o n f i g u r a t i o n
#d e f i n e CC DEVIATN 0x15 // Modem dev i a t i on s e t t i n g
#d e f i n e CC MCSM2 0x16 // Main Radio Cntr l State Machine c o n f i g
#d e f i n e CC MCSM1 0x17 // Main Radio Cntr l State Machine c o n f i g
#d e f i n e CC MCSM0 0x18 // Main Radio Cntr l State Machine c o n f i g
#d e f i n e CC FOCCFG 0x19 // Frequency O f f s e t Compensation c o n f i g
#d e f i n e CC BSCFG 0x1A // Bit Synchron izat ion c o n f i g u r a t i o n
#d e f i n e CC AGCCTRL2 0x1B // AGC c o n t r o l
#d e f i n e CC AGCCTRL1 0x1C // AGC c o n t r o l
#d e f i n e CC AGCCTRL0 0x1D // AGC c o n t r o l
#d e f i n e CC WOREVT1 0x1E // High byte Event 0 timeout
#d e f i n e CC WOREVT0 0x1F // Low byte Event 0 timeout
#d e f i n e CC WORCTRL 0x20 // Wake On Radio c o n t r o l
#d e f i n e CC FREND1 0x21 // Front end RX c o n f i g u r a t i o n
#d e f i n e CC FREND0 0x22 // Front end TX c o n f i g u r a t i o n
#d e f i n e CC FSCAL3 0x23 // Frequency s y n t h e s i z e r c a l i b r a t i o n
#d e f i n e CC FSCAL2 0x24 // Frequency s y n t h e s i z e r c a l i b r a t i o n
#d e f i n e CC FSCAL1 0x25 // Frequency s y n t h e s i z e r c a l i b r a t i o n
#d e f i n e CC FSCAL0 0x26 // Frequency s y n t h e s i z e r c a l i b r a t i o n
#d e f i n e CC RCCTRL1 0x27 // RC o s c i l l a t o r c o n f i g u r a t i o n
#d e f i n e CC RCCTRL0 0x28 // RC o s c i l l a t o r c o n f i g u r a t i o n
#d e f i n e CC FSTEST 0x29 // Frequency s y n t h e s i z e r c a l c o n t r o l
#d e f i n e CC PTEST 0x2A // Production t e s t
#d e f i n e CC AGCTEST 0x2B // AGC t e s t
#d e f i n e CC TEST2 0x2C // Various t e s t s e t t i n g s
#d e f i n e CC TEST1 0x2D // Various t e s t s e t t i n g s
#d e f i n e CC TEST0 0x2E // Various t e s t s e t t i n g s

// Status r e g i s t e r s − read only
#d e f i n e CC PARTNUM 0x30 // Part number
#d e f i n e CC VERSION 0x31 // Current v e r s i o n number
#d e f i n e CC FREQEST 0x32 // Frequency o f f s e t e s t imate
#d e f i n e CC LQI 0x33 // Demodulator e s t imate f o r l i n k q u a l i t y

Page 34

WERHM – Final Report EE492 May15-23

#d e f i n e CC RSSI 0x34 // Received s i g n a l s t r ength i n d i c a t i o n
#d e f i n e CC MARCSTATE 0x35 // Control s t a t e machine s t a t e
#d e f i n e CC WORTIME1 0x36 // High byte o f WOR timer
#d e f i n e CC WORTIME0 0x37 // Low byte o f WOR timer
#d e f i n e CC PKTSTATUS 0x38 // Current GDOx s t a t u s and packet s t a t u s
#d e f i n e CC VCO VC DAC 0x39 // Current s e t t i n g from PLL c a l module
#d e f i n e CC TXBYTES 0x3A // Underflow and # of bytes in TXFIFO
#d e f i n e CC RXBYTES 0x3B // Overflow and # of bytes in RXFIFO
#d e f i n e CC NUM RXBYTES 0x7F // Mask ”# of bytes ” f i e l d in RXBYTES

// Strobe commands
#d e f i n e CC SRES 0x30 // Reset chip .
#d e f i n e CC SFSTXON 0x31 // Enable/ c a l i b r a t e f r e q s y n t h e s i z e r
#d e f i n e CC SXOFF 0x32 // Turn o f f c r y s t a l o s c i l l a t o r .
#d e f i n e CC SCAL 0x33 // Ca l ib ra t e f r e q s y n t h e s i z e r & d i s a b l e
#d e f i n e CC SRX 0x34 // Enable RX.
#d e f i n e CC STX 0x35 // Enable TX.
#d e f i n e CC SIDLE 0x36 // Exit RX / TX
#d e f i n e CC SAFC 0x37 // AFC adjustment o f f r e q s y n t h e s i z e r
#d e f i n e CC SWOR 0x38 // Star t automatic RX p o l l i n g sequence
#d e f i n e CC SPWD 0x39 // Enter pwr down mode when CSn goes high
#d e f i n e CC SFRX 0x3A // Flush the RX FIFO b u f f e r .
#d e f i n e CC SFTX 0x3B // Flush the TX FIFO b u f f e r .
#d e f i n e CC SWORRST 0x3C // Reset r e a l time c l o ck .
#d e f i n e CC SNOP 0x3D // No operat ion .

// Output power d e f i n i t i o n s
#d e f i n e CC PWR NEG 30 0x01
#d e f i n e CC PWR NEG 20 0x02
#d e f i n e CC PWR NEG 15 0x03
#d e f i n e CC PWR NEG 10 0x04
#d e f i n e CC PWR 0 0x05
#d e f i n e CC PWR 5 0x06
#d e f i n e CC PWR 7 0x07
#d e f i n e CC PWR 10 0x08

#d e f i n e CC PATABLE 0x3E

unsigned char CC1101 reg write (unsigned char address , unsigned char data) ;
unsigned char CC1101 burst reg wr i te (unsigned char s t a r t i n g a d d r e s s , unsigned char ∗data , i n t num bytes) ;
unsigned char CC1101 reg read (unsigned char address) ;
unsigned char CC1101 strobe (unsigned char s t robe) ;
unsigned char C C 1 1 0 1 r e a d s t a t u s r e g i s t e r (unsigned char address) ;

unsigned char cc1101 send (i n t num bytes) ;
unsigned char c c 1 1 0 1 w a i t f o r p a c k e t () ;

void c c 1 1 0 1 c o n f i g (unsigned char dev i c e addre s s , unsigned char channel number) ;
void cc1101 send packet (unsigned char ∗data , i n t num bytes) ;
unsigned char cc1101 rcv packe t (unsigned char ∗data , i n t ∗num bytes) ;

Page 35

WERHM – Final Report EE492 May15-23

unsigned char CC1101 s leep wake on radio () ;

unsigned char CC1101 burst reg read (unsigned char s t a r t i n g a d d r e s s , unsigned char ∗data , i n t num bytes) ;

void CC1101 set output power (unsigned char pwr) ;

void CC1101 sleep () ;
void CC1101 wake () ;

unsigned char checksum (unsigned char ∗ptr , i n t l ength) ;

#e n d i f /∗ CC 1101 H ∗/

Page 36

WERHM – Final Report EE492 May15-23

/∗
∗ cc1101 . c
∗/

#inc lude <msp430 . h>
#inc lude ” s p i . h”
#inc lude ” cc1101 . h”
#inc lude ” m i c r o c o n t r o l l e r . h”

#d e f i n e HEADER READ(x) (x | CC HEADER RW)
#d e f i n e HEADER WRITE(x) (x & ˜CC HEADER RW)
#d e f i n e HEADER BURST(x) (x | CC HEADER BURST)
#d e f i n e HEADER SINGLE(x) (x & ˜CC HEADER BURST)

unsigned char CC1101 reg write (unsigned char address , unsigned char data) {
unsigned char header = (address & ˜CC HEADER RW) & ˜CC HEADER BURST;

v o l a t i l e unsigned char s t a t u s ;

CC1101 SELECT ;

//TODO Wait f o r CC1101 to be ready
s p i t x (header) ;
s t a t u s = s p i t x (data) ;

CC1101 DESELECT ;

return s t a t u s ;
}

unsigned char CC1101 burst reg wr i te (unsigned char s t a r t i n g a d d r e s s ,
unsigned char ∗data , i n t num bytes) {

unsigned char header = (s t a r t i n g a d d r e s s & ˜CC HEADER RW) | CC HEADER BURST;

v o l a t i l e unsigned char s t a t u s ;
i n t i ;

CC1101 SELECT ;
s p i t x (header) ;
f o r (i = 0 ; i < num bytes ; i ++){

s t a t u s = s p i t x (data [i]) ;
}
CC1101 DESELECT ;

return s t a t u s ;
}

unsigned char CC1101 reg read (unsigned char address) {
unsigned char header = (address | CC HEADER RW) & ˜CC HEADER BURST;

Page 37

WERHM – Final Report EE492 May15-23

v o l a t i l e unsigned char s t a t u s ;

CC1101 SELECT ;

s p i t x (header) ;
s t a t u s = s p i t x (0 x00) ;

CC1101 DESELECT ;

return s t a t u s ;
}

unsigned char CC1101 burst reg read (unsigned char s t a r t i n g a d d r e s s ,
unsigned char ∗data , i n t num bytes) {

unsigned char header = (s t a r t i n g a d d r e s s | CC HEADER RW) | CC HEADER BURST;

v o l a t i l e unsigned char s t a t u s ;
i n t i ;

CC1101 SELECT ;
s t a t u s = s p i t x (header) ;
f o r (i = 0 ; i < num bytes ; i ++){

data [i] = s p i t x (0 x00) ;
}
CC1101 DESELECT ;

return s t a t u s ;
}

unsigned char CC1101 strobe (unsigned char s t robe) {
v o l a t i l e unsigned char s t a t u s ;

CC1101 SELECT ;

s t a t u s = s p i t x (s t robe) ;

CC1101 DESELECT ;

return s t a t u s ;
}

void c c 1 1 0 1 c o n f i g (unsigned char dev i c e addre s s , unsigned char channel number) {
/∗ Set Slave S e l e c t as output and s e t high ∗/
P1DIR &= ˜GDO0; // GDO0 input
P1DIR &= ˜GDO2; // GDO2 input

d e l a y c y c l e s (1 0 0 0) ;

CC1101 strobe (CC SRES) ;

d e l a y c y c l e s (1 0 0 0) ;

Page 38

WERHM – Final Report EE492 May15-23

// Write r e g i s t e r s e t t i n g s
CC1101 reg write (CC IOCFG2, 0x01) ; // GDO2 output pin c o n f i g . // GDO2 High when TX, and low when f i n i s h e d
CC1101 reg write (CC IOCFG0, 0x06) ; // GDO0 output pin c o n f i g . // RX Threshold t r i g g e r on GD0
CC1101 reg write (CC PKTLEN, 6 4) ; // Packet l ength .
CC1101 reg write (CC PKTCTRL1, 0x03) ; // Packet automation c o n t r o l . //0 x05
CC1101 reg write (CC PKTCTRL0, 0x01) ; // Packet automation c o n t r o l . // CRC enabled and Var iab le packet l ength enabled , data whitening o f f
CC1101 reg write (CC ADDR, d e v i c e a d d r e s s) ; // Device address . // Device address f o r packet f i l t e r i n g
CC1101 reg write (CC CHANNR, channel number) ; // Channel number . // S h i f t s comm f r e q by (Channel spac ing) ∗ ˜100kHz
CC1101 reg write (CC FSCTRL1, 0x0B) ; // Freq s y n t h e s i z e r c o n t r o l .
CC1101 reg write (CC FSCTRL0, 0x00) ; // Freq s y n t h e s i z e r c o n t r o l .
CC1101 reg write (CC FREQ2, 0x10) ; // Freq c o n t r o l word , high byte
CC1101 reg write (CC FREQ1, 0xA7) ; // Freq c o n t r o l word , mid byte .
CC1101 reg write (CC FREQ0, 0x62) ; // Freq c o n t r o l word , low byte .
CC1101 reg write (CC MDMCFG4, 0x2D) ; // Modem c o n f i g u r a t i o n .
CC1101 reg write (CC MDMCFG3, 0x3B) ; // Modem c o n f i g u r a t i o n .
CC1101 reg write (CC MDMCFG2, 0x73) ; // Modem c o n f i g u r a t i o n .
CC1101 reg write (CC MDMCFG1, 0x22) ; // Modem c o n f i g u r a t i o n .
CC1101 reg write (CC MDMCFG0, 0xF8) ; // Modem c o n f i g u r a t i o n .
CC1101 reg write (CC DEVIATN, 0x00) ; // Modem dev (when FSK mod en)
CC1101 reg write (CC MCSM1, 0x3F) ; // MainRadio Cntr l State Machine
CC1101 reg write (CC MCSM0, 0x18) ; // MainRadio Cntr l State Machine
CC1101 reg write (CC FOCCFG, 0x1D) ; // Freq O f f s e t Compens . Conf ig
CC1101 reg write (CC BSCFG, 0x1C) ; // Bit synchron i za t i on c o n f i g .
CC1101 reg write (CC AGCCTRL2, 0xC7) ; // AGC c o n t r o l .
CC1101 reg write (CC AGCCTRL1, 0x00) ; // AGC c o n t r o l .
CC1101 reg write (CC AGCCTRL0, 0xB2) ; // AGC c o n t r o l .
CC1101 reg write (CC FREND1, 0xB6) ; // Front end RX c o n f i g u r a t i o n .
CC1101 reg write (CC FREND0, 0x10) ; // Front end RX c o n f i g u r a t i o n .
CC1101 reg write (CC FSCAL3, 0xEA) ; // Frequency s y n t h e s i z e r c a l .
CC1101 reg write (CC FSCAL2, 0x0A) ; // Frequency s y n t h e s i z e r c a l .
CC1101 reg write (CC FSCAL1, 0x00) ; // Frequency s y n t h e s i z e r c a l .
CC1101 reg write (CC FSCAL0, 0x11) ; // Frequency s y n t h e s i z e r c a l .
CC1101 reg write (CC FSTEST, 0x59) ; // Frequency s y n t h e s i z e r c a l .
CC1101 reg write (CC TEST2, 0x88) ; // Various t e s t s e t t i n g s .
CC1101 reg write (CC TEST1, 0x31) ; // Various t e s t s e t t i n g s .
CC1101 reg write (CC TEST0, 0x0B) ; // Various t e s t s e t t i n g s .
CC1101 reg write (CC FIFOTHR, 1 4) ; // RX/TX FIFO capac i ty t r i g g e r // 0x00 == 4 bytes

//TODO Device check ing
// CC1101 strobe (CC SFRX) ;

}

/∗
∗ Sends a packet from data b u f f e r
∗/

void cc1101 send packet (unsigned char ∗data , i n t num bytes) {

//TODO Handle num bytes > MAX TXFIFO − 2 (f o r l ength and dev i c e addr)

Page 39

WERHM – Final Report EE492 May15-23

//TODO Handle packet s i z e and dev i ce address as f i r s t two bytes

CC1101 burst reg wr i te (0x3F , data , num bytes) ;
s t a t u s 2 = C C 1 1 0 1 r e a d s t a t u s r e g i s t e r (CC TXBYTES) ;
CC1101 strobe (CC STX) ;

whi l e (! (P1IN & GDO0)) ;
whi l e (P1IN & GDO0) ;
i f ((CC1101 strobe (CC SNOP) & 0x07) == 0x07){

CC1101 strobe (CC SFTX) ;
}

}

/∗
∗ Reads b u f f e r from RX FIFO a f t e r check ing that the re i s data to be read
∗
∗ re turn : 0xFF i f RX FIFO over f l ow
∗ 0 i f data was read from b u f f e r and CRC−pass
∗ 1 i f data was read from b u f f e r but CRC− f a i l
∗/

unsigned char cc1101 rcv packe t (unsigned char ∗data , i n t ∗num bytes) {

unsigned char pkt l en = CC1101 reg read (0xBF) ;
// unsigned char pkt l en = C C 1 1 0 1 r e a d s t a t u s r e g i s t e r (CC RXBYTES) & 0x7F ;

∗num bytes = pkt len ;
CC1101 burst reg read (0xFF , data , pkt l en) ;

r e turn 0 ;

}

/∗
∗ Reads the value o f a read−only s t a t u s r e g i s t e r
∗
∗/

unsigned char C C 1 1 0 1 r e a d s t a t u s r e g i s t e r (unsigned char address) {

unsigned char header = address | CC HEADER RW | CC HEADER BURST;

v o l a t i l e unsigned char data ;

CC1101 SELECT ;

s p i t x (header) ;
data = s p i t x (0 x00) ;

CC1101 DESELECT ;

return data ;

Page 40

WERHM – Final Report EE492 May15-23

}

/∗
∗ Puts CC1101 to s l e e p
∗
∗/

void CC1101 sleep () {

// Set GDO pins as high impedance to save power
// CC1101 reg write (CC IOCFG2, 0x2E) ;
// CC1101 reg write (CC IOCFG0, 0x2E) ;

CC1101 strobe (CC SPWD) ; //Put CC1101 to s l e e p

}

/∗
∗ Wakes CC1101 from s l e e p mode and r e s t o r e s s e t t i n g s
∗
∗/

void CC1101 wake () {

CC1101 SELECT ;
whi l e (P1IN & BIT7) ;
CC1101 DESELECT ;

// Restore GDO s t a t e s
// CC1101 reg write (CC IOCFG2, 0x01) ;
// CC1101 reg write (CC IOCFG0, 0x06) ;

CC1101 strobe (CC SIDLE) ;
CC1101 strobe (CC SFRX) ;

}

/∗
∗ Sets CC1101 output power by wr i t i ng to f i r s t byte o f PATABLE
∗ −Other bytes o f PATABLE are ignored as ramp up/down are not used
∗
∗/

void CC1101 set output power (unsigned char pwr){

switch (pwr){
case CC PWR NEG 30 :

CC1101 reg write (CC PATABLE, 0x12) ;
break ;

case CC PWR NEG 20 :
CC1101 reg write (CC PATABLE, 0x0E) ;

Page 41

WERHM – Final Report EE492 May15-23

break ;
case CC PWR NEG 15 :

CC1101 reg write (CC PATABLE, 0x1D) ;
break ;

case CC PWR NEG 10 :
CC1101 reg write (CC PATABLE, 0x34) ;
break ;

case CC PWR 0:
CC1101 reg write (CC PATABLE, 0x60) ;
break ;

case CC PWR 5:
CC1101 reg write (CC PATABLE, 0x84) ;
break ;

case CC PWR 7:
CC1101 reg write (CC PATABLE, 0xC8) ;
break ;

case CC PWR 10 :
CC1101 reg write (CC PATABLE, 0xC0) ;
break ;

d e f a u l t :
CC1101 reg write (CC PATABLE, 0x60) ;
break ;

}
}

/∗
∗ Used to generate and check 8−b i t checksum
∗ −Pass b u f f e r without checksum to return checksum value
∗ −Pass b u f f e r with checksum to return 0 on checksum pass
∗/

unsigned char checksum (unsigned char ∗ptr , i n t l ength){
unsigned char va lue = 0 ;
whi l e (length−− != 0)

va lue −= ∗ ptr++;
return value ;

}

Page 42

WERHM – Final Report EE492 May15-23

/∗
∗ s p i . h
∗/

#i f n d e f SPI H
#d e f i n e SPI H

#d e f i n e CC1101 CS BIT5
#d e f i n e CC1101 SELECT P1OUT &= ˜CC1101 CS
#d e f i n e CC1101 DESELECT P1OUT |= CC1101 CS

#d e f i n e FLASH CS BIT2
#d e f i n e FLASH SELECT P1OUT &= ˜FLASH CS
#d e f i n e FLASH DESELECT P1OUT |= FLASH CS

#d e f i n e MISO BIT5
#d e f i n e MOSI BIT4
#d e f i n e SCK BIT0

#d e f i n e SPI READ (P3IN & MISO)

// void s p i s e t u p (void (∗ s p i r x) (char)) ;
void s p i s e t u p () ;

/∗ SPI Transmit in Low Power Mode , In t e r rup t Unsafe ∗/
unsigned char s p i t x l p m i u (unsigned char tx) ;

/∗ SPI Transmit in Active Power mode (i n t e r r u p t s a f e) ∗/
unsigned char s p i t x (unsigned char tx) ;

#e n d i f /∗ SPI H ∗/

Page 43

WERHM – Final Report EE492 May15-23

/∗
∗ s p i . c
∗/

#inc lude <msp430 . h>
#inc lude ” m i c r o c o n t r o l l e r . h”
#inc lude ” s p i . h”

// Slave mode i f d e f , e l s e Master mode
//#d e f i n e SLAVE SPI

v o l a t i l e char i n t e r r u p t r x ; // Temporary r e g i s t e r f o r s t o r i n g rx from s p i i n t e r r u p t

void s p i s e t u p () {

P1DIR |= CC1101 CS + FLASH CS + BIT1 ;

P3SEL |= BIT0 + BIT5 + BIT4 ;
P3DIR |= BIT6 ;

FLASH DESELECT;
CC1101 DESELECT ;

UCA0CTL0 |= UCCKPH + UCMSB + UCMST + UCSYNC; // 3−pin , 8−b i t SPI master
UCA0CTL1 |= UCSSEL 2 ; // SMCLK
UCA0BR0 |= 0x02 ;
UCA0BR1 = 0 ; //
UCA0MCTL = 0 ;
UCA0CTL1 &= ˜UCSWRST; // ∗∗ I n i t i a l i z e USCI s t a t e machine∗∗

P1OUT |= BIT1 ;
P3OUT |= BIT6 ;

}

unsigned char s p i t x (unsigned char tx) {

unsigned char out = 0 ;

IFG2 &= ˜UCA0RXIFG;
UCA0TXBUF = tx ;
whi l e (! (IFG2 & UCA0RXIFG)) ;
out = UCA0RXBUF;
return out ;

}

unsigned char s p i t x l p m i u (unsigned char tx) {

unsigned char out = 0 ;

IFG2 &= ˜UCA0RXIFG;

Page 44

WERHM – Final Report EE492 May15-23

UCA0TXBUF = tx ;
whi l e (! (IFG2 & UCA0RXIFG)) ;
out = UCA0RXBUF;
return out ;

}

Page 45

WERHM – Final Report EE492 May15-23

/∗
∗ sht10 . h
∗/

#i f n d e f SHT71 H
#d e f i n e SHT71 H

#d e f i n e SDA PIN BIT1
#d e f i n e SCL PIN BIT0
#d e f i n e SHT VCC BIT2

#d e f i n e LED PIN BIT3
#d e f i n e LED ON P1OUT |= LED PIN
#d e f i n e LED OFF P1OUT &= ˜LED PIN

#d e f i n e SHT ON P2OUT |= SHT VCC
#d e f i n e SHT OFF P2OUT &= ˜SHT VCC

#d e f i n e DATA HIGH P2OUT |= SDA PIN
#d e f i n e DATA LOW P2OUT &= ˜SDA PIN
#d e f i n e DATA READ (P2IN & SDA PIN)

#d e f i n e DATA IN SHT data in ()
#d e f i n e DATA OUT P2DIR |= SDA PIN

#d e f i n e SCL HIGH P2OUT |= SCL PIN
#d e f i n e SCL LOW P2OUT &= ˜SCL PIN
#d e f i n e SCL OUT P2DIR |= SCL PIN

f l o a t read humidity () ;
f l o a t read humidity raw () ;
f l o a t read temperature () ;
i n t read temperature raw () ;
void send SHT command (i n t command) ;
i n t read two bytes SHT () ;
void skipCrcSHT () ;
void send byte SHT (i n t command) ;
unsigned char read byte SHT () ;

void SHT data in () ;

void l e d f l a s h () ;

#e n d i f

Page 46

WERHM – Final Report EE492 May15-23

/∗
∗ sht10 . c
∗/

#inc lude <msp430 . h>
#inc lude ” sht10 . h”
#inc lude ” m i c r o c o n t r o l l e r . h”

f l o a t read humidity () {

f l o a t l i n e a r v a l u e ;
f l o a t raw humidity ;

/∗
∗ Conversion cons tant s as de f ined in the datasheet
∗ f o r l i n e a r l i z i n g senso r va lue
∗
∗ H(l i n e a r) = C1 + C2∗H(raw) + C3∗H(raw)ˆ2
∗/

const f l o a t C1 = −2.0468;
const f l o a t C2 = 0 . 0 3 6 7 ;
const f l o a t C3 = .0000015955 ;

raw humidity = read humidity raw () ;

l i n e a r v a l u e = C1 + C2 ∗ raw humidity + C3 ∗ raw humidity ∗ raw humidity ;

r e turn l i n e a r v a l u e ;
}

f l o a t read humidity raw () {

i n t out ;

const i n t command = 0b00000101 ;

send SHT command (command) ;

DATA IN;

whi l e (DATA READ) {
d e l a y c y c l e s (1 0) ;

}

out = read two bytes SHT () ;

skipCrcSHT () ;

r e turn out ;
}

Page 47

WERHM – Final Report EE492 May15-23

f l o a t read temperature () {

i n t raw value ;
f l o a t temperature ;

const f l o a t D1 = −40.0;
const f l o a t D2 = 0 . 0 1 8 ;

raw value = read temperature raw () ;

temperature = (raw value ∗ D2) + D1 ;

re turn temperature ;
}

i n t read temperature raw () {

i n t out ;

const i n t command = 0b00000011 ;

send SHT command (command) ;

DATA IN;

i n t timeout = 0 ;

whi l e (DATA READ) {
d e l a y c y c l e s (1 0) ;

t imeout += 1 ;
i f (t imeout > 1000000){ //Timeout i f s enso r has mal funct ioned

return 0 ;
}

}

out = read two bytes SHT () ;

skipCrcSHT () ;

r e turn out ;
}

void send SHT command (i n t command) {

i n t ack ;

DATA OUT;
SCL OUT;

//Send s t a r t sequence
DATA HIGH;

Page 48

WERHM – Final Report EE492 May15-23

SCL HIGH ;
DATA LOW;
SCL LOW;
SCL HIGH ;
DATA HIGH;
SCL LOW;

//Send command byte
send byte SHT (command) ;

//Look f o r ack
SCL HIGH ;
DATA IN;
ack = DATA READ;

i f (ack != 0) {
//no ack

}

SCL LOW;
ack = DATA READ;
i f (ack == 0) {

// ack e r r o r
}

}

void send byte SHT (i n t command) {
i n t i ;
f o r (i = 7 ; i >= 0 ; i−−) {

i f (command & (1 << i)) {
DATA HIGH;

} e l s e {
DATA LOW;

}
SCL HIGH ;
SCL LOW;

}

}

i n t read two bytes SHT () {

i n t out ;

DATA IN;

out = read byte SHT () ;
out = out << 8 ;

//Send ack to s enso r f o r f i r s t byte
DATA OUT;

Page 49

WERHM – Final Report EE492 May15-23

DATA HIGH;
DATA LOW;
SCL HIGH ;
SCL LOW;

DATA IN;
out |= read byte SHT () ;

r e turn out ;

}

unsigned char read byte SHT () {

unsigned char out = 0 ;
i n t i ;
f o r (i = 7 ; i >= 0 ; i−−) {

SCL HIGH ;
i f (DATA READ) {

out |= (1 << i) ;
}
SCL LOW;

}
re turn out ;

}

void skipCrcSHT () {

DATA OUT;
SCL OUT;

DATA HIGH;
SCL HIGH ;
SCL LOW;

}

void SHT data in () {
P2DIR &= ˜SDA PIN ;
P2REN |= SDA PIN ;

}

Page 50

WERHM – Final Report EE492 May15-23

/∗
∗ f l a s h . h
∗/

#i f n d e f FLASH H
#d e f i n e FLASH H

unsigned char f l a s h s t a t u s r e g () ;
void flash WREN () ;
void flash WRSR (unsigned char va lue) ;

unsigned char f l a s h r e a d (unsigned long addr) ;
void f l a s h r e a d b u f f e r (unsigned long s ta r t i ng addr , unsigned i n t num bytes , unsigned char ∗ b u f f e r) ;
void f l a s h w r i t e (unsigned long addr , unsigned char va lue) ;
void w a i t f l a s h b u s y () ;
void f l a s h r e s e t () ;

unsigned char f l a s h s e t u p () ;

#e n d i f /∗ FLASH H ∗/

Page 51

WERHM – Final Report EE492 May15-23

/∗
∗ f l a s h . c
∗/

#inc lude <msp430 . h>
#inc lude ” m i c r o c o n t r o l l e r . h”
#inc lude ” s p i . h”
#inc lude ” f l a s h . h”

/∗
∗ Reads the value o f the SST25VF040B s t a t u s r e g i s t e r
∗
∗/

unsigned char f l a s h s t a t u s r e g () {

unsigned char out = 0 ;
FLASH SELECT;

d e l a y c y c l e s (1 0 0) ;

s p i t x (0 x05) ;
out = s p i t x (0) ;
FLASH DESELECT;
return out ;

}

/∗
∗ Enables the write−enable l a t c h on the SST25VF040B
∗
∗/

void flash WREN () {

FLASH SELECT;
s p i t x (0 x06) ;
FLASH DESELECT;

}

/∗
∗ Writes to the SST25VF040B s t a t u s r e g i s t e r
∗
∗/

void flash WRSR (unsigned char va lue) {

flash WREN () ;
FLASH SELECT;
s p i t x (0 x01) ;
s p i t x (va lue) ;
FLASH DESELECT;

}

/∗
∗ Reads one byte s to r ed in memory

Page 52

WERHM – Final Report EE492 May15-23

∗
∗/

unsigned char f l a s h r e a d (unsigned long addr) {

unsigned char out = 0 ;

FLASH SELECT;
s p i t x (0 x03) ;
s p i t x ((addr & 0xFFFFFF) >> 1 6) ;
s p i t x ((addr & 0xFFFF) >> 8) ;
s p i t x (addr & 0xFF) ;
out = s p i t x (0) ;
FLASH DESELECT;
return out ;

}

/∗
∗ Reads mul t ip l e bytes from f l a s h memory
∗ − a maximum of 128 bytes can be read at a time
∗ TODO: cons id e r wr i t i ng bytes to g l o b a l b u f f e r i n s t ead o f pas s ing po in t e r
∗
∗/

void f l a s h r e a d b u f f e r (unsigned long s ta r t i ng addr , unsigned i n t num bytes ,
unsigned char ∗ b u f f e r) {

unsigned i n t i ;

FLASH SELECT;
s p i t x (0 x03) ;
s p i t x ((s t a r t i n g a d d r & 0xFFFFFF) >> 1 6) ;
s p i t x ((s t a r t i n g a d d r & 0xFFFF) >> 8) ;
s p i t x (s t a r t i n g a d d r & 0xFF) ;
f o r (i = 0 ; i < num bytes ; i ++){

b u f f e r [i] = s p i t x (0) ;
}

}

/∗
∗ Writes one byte to memory
∗
∗ Note : dev i c e address must have been erased f o r wr i t e operat i on to take p lace
∗/

void f l a s h w r i t e (unsigned long addr , unsigned char va lue) {

flash WREN () ;

FLASH SELECT;
s p i t x (0 x02) ;
s p i t x ((addr & 0xFFFFFF) >> 1 6) ;
s p i t x ((addr & 0xFFFF) >> 8) ;
s p i t x (addr & 0xFF) ;

Page 53

WERHM – Final Report EE492 May15-23

s p i t x (va lue) ;
FLASH DESELECT;
w a i t f l a s h b u s y () ;

}

/∗
∗ Waits f o r any wr i t e opera t i on to f i n i s h
∗
∗ TODO: add d e t e c t i o n f o r i n f i n i t e wait in case dev i ce d i e s
∗
∗/

void w a i t f l a s h b u s y () {
whi le ((f l a s h s t a t u s r e g () & 0x01) == 0x01) {

// d e l a y c y c l e s (1 0 0) ;
}

}

/∗
∗ Resets whole chip
∗
∗/

void f l a s h r e s e t () {

flash WREN () ;
FLASH SELECT;
s p i t x (0 x60) ;
FLASH DESELECT;
w a i t f l a s h b u s y () ;

}

/∗
∗ Resets SST25VF040B and removes a l l b lock write−p r o t e c t i o n
∗
∗/

unsigned char f l a s h s e t u p () {

f l a s h r e s e t () ;
flash WRSR (0) ;
r e turn f l a s h s t a t u s r e g () ;

}

Page 54

WERHM – Final Report EE492 May15-23

E.2 BASE STATION CODING

#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>

#inc lude ” s p i . h”
#inc lude ” cc1101 . h”
#inc lude ” gpio . h”

// GPIO setup macros . Always use INP GPIO(x) be f o r e us ing OUT GPIO(x) or SET GPIO ALT(x , y)
#d e f i n e INP GPIO(g) ∗(gpio +((g)/10)) &= ˜(7<<(((g)%10)∗3))
#d e f i n e OUT GPIO(g) ∗(gpio +((g)/10)) |= (1<<(((g)%10)∗3))
#d e f i n e SET GPIO ALT(g , a) ∗(gpio +(((g) / 1 0))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)∗3))

#d e f i n e GPIO SET ∗(gpio +7) // s e t s b i t s which are 1 i g n o r e s b i t s which are 0
#d e f i n e GPIO CLR ∗(gpio +10) // c l e a r s b i t s which are 1 i g n o r e s b i t s which are 0

#d e f i n e GET GPIO(g) (∗ (gpio+13)&(1<<g)) // 0 i f LOW, (1<<g) i f HIGH

#d e f i n e GPIO PULL ∗(gpio +37) // Pul l up/ p u l l down
#d e f i n e GPIO PULLCLK0 ∗(gpio +38) // Pul l up/ p u l l down c lo ck

i n t main (i n t argc , char ∗argv []) {

s e t u p i o () ;
INP GPIO(CS GPIO) ;

//OUT GPIO(CS GPIO) ;
//GPIO SET = 1 << CS GPIO ;

s p i s e t u p () ;
// c c 1 1 0 1 c o n f i g (2 , 0) ;
Network In i t (2) ;

p r i n t f (” Fin i shed cc1101 c o n f i g \n ”) ;

unsigned char rx [6 4] , tx [6 4] ;
i n t r x s i z e = s i z e o f (rx) ;

memset (tx , 0 , s i z e o f (tx)) ;
i n t i ;
f o r (i =0; i<s i z e o f (tx) ; i++)

tx [i] = i ;

whi l e (1) {
// CC1101 strobe (CC SFRX) ;
rx [0] = CC1101 strobe (CC SRX) ; //RX mode

i n t x ;

Page 55

WERHM – Final Report EE492 May15-23

whi l e (! (x = GET GPIO(1 3))) ;

c c1101 rcv packe t (rx , &r x s i z e) ;

p r i n t f (”RX %d : 0x ” , r x s i z e) ;
f o r (i =0; i < r x s i z e ; i++)

p r i n t f (”%2x ” , rx [i]) ;
p r i n t f (”\n ”) ;

}
p r i n t f (” Fin i shed sending packet \n ”) ;
s p i c l o s e () ;

}

Page 56

WERHM – Final Report EE492 May15-23

i n t mem fd ;
void ∗gpio map ;

// I /O a c c e s s
v o l a t i l e unsigned ∗ gpio ;

// GPIO setup macros . Always use INP GPIO(x) be f o r e us ing OUT GPIO(x) or SET GPIO ALT(x , y)
#d e f i n e INP GPIO(g) ∗(gpio +((g)/10)) &= ˜(7<<(((g)%10)∗3))
#d e f i n e OUT GPIO(g) ∗(gpio +((g)/10)) |= (1<<(((g)%10)∗3))
#d e f i n e SET GPIO ALT(g , a) ∗(gpio +(((g) / 1 0))) |= (((a)<=3?(a)+4:(a)==4?3:2)<<(((g)%10)∗3))

#d e f i n e GPIO SET ∗(gpio +7) // s e t s b i t s which are 1 i g n o r e s b i t s which are 0
#d e f i n e GPIO CLR ∗(gpio +10) // c l e a r s b i t s which are 1 i g n o r e s b i t s which are 0

#d e f i n e GET GPIO(g) (∗ (gpio+13)&(1<<g)) // 0 i f LOW, (1<<g) i f HIGH

#d e f i n e GPIO PULL ∗(gpio +37) // Pul l up/ p u l l down
#d e f i n e GPIO PULLCLK0 ∗(gpio +38) // Pul l up/ p u l l down c lo ck

void s e t u p i o () ;

Page 57

WERHM – Final Report EE492 May15-23

//
// How to a c c e s s GPIO r e g i s t e r s from C−code on the Raspberry−Pi
// Example program
// 15−January−2012
// Dom and Gert
// Revised : 15−Feb−2013

// Access from ARM Running Linux

#d e f i n e BCM2708 PERI BASE 0x20000000
#d e f i n e GPIO BASE (BCM2708 PERI BASE + 0x200000) /∗ GPIO c o n t r o l l e r ∗/

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude < f c n t l . h>
#inc lude <sys /mman. h>
#inc lude <uni s td . h>
#inc lude ” gpio . h”

#d e f i n e PAGE SIZE (4∗1024)
#d e f i n e BLOCK SIZE (4∗1024)

void pr intButton (i n t g)
{

i f (GET GPIO(g)) // !=0 <−> b i t i s 1 <− port i s HIGH=3.3V
p r i n t f (” Button pre s sed !\n ”) ;

e l s e // port i s LOW=0V
p r i n t f (” Button r e l e a s e d !\n ”) ;

}

//
// Set up a memory r e g i o n s to a c c e s s GPIO
//
void s e t u p i o ()
{

/∗ open /dev/mem ∗/
i f ((mem fd = open (”/ dev/mem” , ORDWR|O SYNC)) < 0) {

p r i n t f (” can ’ t open /dev/mem \n ”) ;
e x i t (−1);

}

/∗ mmap GPIO ∗/
gpio map = mmap(

NULL, //Any adddress in our space w i l l do
BLOCK SIZE, //Map length
PROT READ|PROT WRITE,// Enable read ing & w r i t t i n g to mapped memory
MAP SHARED, // Shared with other p r o c e s s e s
mem fd , // F i l e to map
GPIO BASE // O f f s e t to GPIO p e r i p h e r a l

) ;

Page 58

WERHM – Final Report EE492 May15-23

c l o s e (mem fd) ; //No need to keep mem fd open a f t e r mmap

i f (gpio map == MAP FAILED) {
p r i n t f (”mmap e r r o r %d\n” , (i n t) gpio map) ; / / errno a l s o s e t !
e x i t (−1);

}

// Always use v o l a t i l e po in t e r !
gpio = (v o l a t i l e unsigned ∗) gpio map ;

} // s e t u p i o

Page 59

WERHM – Final Report EE492 May15-23

/∗
∗ SPI i n t e r f a c e
∗
∗ Created on : Nov 5 , 2014
∗ Author : Brandon
∗/

#i f n d e f SPI H
#d e f i n e SPI H

// void s p i s e t u p (void (∗ s p i r x) (char)) ;
void s p i s e t u p () ;

/∗ SPI Transmit in Low Power Mode , In t e r rup t Unsafe ∗/
char s p i t x l p m i u (char tx) ;

/∗ SPI Transmit in Active Power mode (i n t e r r u p t s a f e) ∗/
char sp i tx am (char tx) ;

char s p i t x (char tx) ;

void s p i c l o s e () ;

void s p i b u r s t t x (char ∗ tx , char ∗ rx , i n t t x l e n) ;

#e n d i f /∗ SPI H ∗/

Page 60

WERHM – Final Report EE492 May15-23

/∗
∗ SPI t e s t i n g u t i l i t y (us ing sp idev d r i v e r)
∗
∗ Copyright (c) 2007 MontaVista Software , Inc .
∗ Copyright (c) 2007 Anton Vorontsov <avorontsov@ru . mvista . com>
∗
∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify
∗ i t under the terms o f the GNU General Publ ic L i cense as publ i shed by
∗ the Free Software Foundation ; e i t h e r v e r s i on 2 o f the L icense .
∗
∗ Cross−compi le with cros s−gcc −I /path/ to / cros s−ke rne l / in c lude
∗/

/∗
∗ Source : http :// neophob . com/2012/08/ raspberry−pi−enable−the−sp i−dev i c e /
∗/

#inc lude <s t d i n t . h>
#inc lude <uni s td . h>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <getopt . h>
#inc lude < f c n t l . h>
#inc lude <sys / i o c t l . h>
#inc lude <l i nux / types . h>
#inc lude <l i nux / s p i / sp idev . h>

#inc lude ” s p i . h”

#d e f i n e ARRAY SIZE(a) (s i z e o f (a) / s i z e o f ((a) [0]))

s t a t i c void pabort (const char ∗ s)
{

per ro r (s) ;
abort () ;

}

s t a t i c const char ∗ dev i c e = ”/dev/ sp idev0 . 0 ” ;
s t a t i c u i n t 8 t mode = 0 ;
s t a t i c u i n t 8 t b i t s = 8 ;
s t a t i c u i n t 3 2 t speed = 500000;
s t a t i c u i n t 1 6 t de lay ;

s t a t i c i n t fd ;

s t a t i c void t r a n s f e r (i n t fd , u i n t 8 t ∗ tx , u i n t 8 t ∗ rx , s i z e t count)
{

i n t r e t ;

s t r u c t s p i i o c t r a n s f e r t r = {
. tx bu f = (unsigned long) tx ,

Page 61

WERHM – Final Report EE492 May15-23

. rx bu f = (unsigned long) rx ,

. l en = count , //ARRAY SIZE(tx) ,

. d e l a y u s e c s = delay ,

. speed hz = speed ,

. b i t s pe r word = bi t s ,
} ;

r e t = i o c t l (fd , SPI IOC MESSAGE(1) , &t r) ;
i f (r e t < 1)

pabort (” can ’ t send s p i message ”) ;

}

s t a t i c void p r i n t u s a g e (const char ∗prog)
{

p r i n t f (” Usage : %s [−DsbdlHOLC3]\n” , prog) ;
puts (” −D −−dev i c e dev i c e to use (d e f a u l t /dev/ sp idev1 . 1)\ n”

” −s −−speed max speed (Hz)\n”
” −d −−delay de lay (usec)\n”
” −b −−bpw b i t s per word \n”
” − l −−loop loopback \n”
” −H −−cpha c l o ck phase\n”
” −O −−cpo l c l o ck p o l a r i t y \n”
” −L −−l s b l e a s t s i g n i f i c a n t b i t f i r s t \n”
” −C −−cs−high chip s e l e c t a c t i v e high \n”
” −3 −−3wire SI /SO s i g n a l s shared \n ”) ;

e x i t (1) ;
}

s t a t i c void pa r s e op t s (i n t argc , char ∗argv [])
{

whi le (1) {
s t a t i c const s t r u c t opt ion l o p t s [] = {

{ ” dev i ce ” , 1 , 0 , ’D’ } ,
{ ” speed ” , 1 , 0 , ’ s ’ } ,
{ ” de lay ” , 1 , 0 , ’d ’ } ,
{ ”bpw” , 1 , 0 , ’b ’ } ,
{ ” loop ” , 0 , 0 , ’ l ’ } ,
{ ”cpha ” , 0 , 0 , ’H’ } ,
{ ” cpo l ” , 0 , 0 , ’O’ } ,
{ ” l s b ” , 0 , 0 , ’L ’ } ,
{ ” cs−high ” , 0 , 0 , ’C’ } ,
{ ”3 wire ” , 0 , 0 , ’ 3 ’ } ,
{ ”no−cs ” , 0 , 0 , ’N’ } ,
{ ” ready ” , 0 , 0 , ’R’ } ,
{ NULL, 0 , 0 , 0 } ,

} ;
i n t c ;

c = ge top t l ong (argc , argv , ”D: s : d : b : lHOLC3NR” , lopt s , NULL) ;

Page 62

WERHM – Final Report EE492 May15-23

i f (c == −1)
break ;

// https : //www. ke rne l . org /doc/Documentation/ s p i / spi−summary
switch (c) {
case ’D’ :

dev i c e = optarg ;
break ;

case ’ s ’ :
speed = a t o i (optarg) ;
break ;

case ’d ’ :
de lay = a t o i (optarg) ;
break ;

case ’b ’ :
b i t s = a t o i (optarg) ;
break ;

case ’ l ’ :
mode |= SPI LOOP ;
break ;

case ’H’ :
mode |= SPI CPHA ; // Clock phase , 1=sample on t r a i l i n g , 0=sample on l ead ing
break ;

case ’O’ :
mode |= SPI CPOL ; // Clock po l a r i t y , 1=Clock s t a r t s high , 0=Clock s t a r t s low
break ;

case ’L ’ :
mode |= SPI LSB FIRST ;
break ;

case ’C ’ :
mode |= SPI CS HIGH ;
break ;

case ’ 3 ’ :
mode |= SPI 3WIRE ;
break ;

case ’N’ :
mode |= SPI NO CS ;
break ;

case ’R ’ :
mode |= SPI READY;
break ;

d e f a u l t :
p r i n t u s a g e (argv [0]) ;
break ;

}
}

}

void s p i s e t u p ()
{

i n t r e t = 0 ;

Page 63

WERHM – Final Report EE492 May15-23

mode = 0 ;

fd = open (device , ORDWR) ;
i f (fd < 0)

pabort (” can ’ t open dev i ce ”) ;

/∗
∗ s p i mode
∗/

r e t = i o c t l (fd , SPI IOC WR MODE, &mode) ;
i f (r e t == −1)

pabort (” can ’ t s e t s p i mode ”) ;

r e t = i o c t l (fd , SPI IOC RD MODE , &mode) ;
i f (r e t == −1)

pabort (” can ’ t get s p i mode ”) ;

/∗
∗ b i t s per word
∗/

r e t = i o c t l (fd , SPI IOC WR BITS PER WORD, &b i t s) ;
i f (r e t == −1)

pabort (” can ’ t s e t b i t s per word ”) ;

r e t = i o c t l (fd , SPI IOC RD BITS PER WORD , &b i t s) ;
i f (r e t == −1)

pabort (” can ’ t get b i t s per word ”) ;

/∗
∗ max speed hz
∗/

r e t = i o c t l (fd , SPI IOC WR MAX SPEED HZ, &speed) ;
i f (r e t == −1)

pabort (” can ’ t s e t max speed hz ”) ;

r e t = i o c t l (fd , SPI IOC RD MAX SPEED HZ , &speed) ;
i f (r e t == −1)

pabort (” can ’ t get max speed hz ”) ;

p r i n t f (” s p i mode : %d\n” , mode) ;
p r i n t f (” b i t s per word : %d\n” , b i t s) ;
p r i n t f (”max speed : %d Hz (%d KHz)\n” , speed , speed /1000) ;

}

char s p i t x (char tx) {
char rx ;
t r a n s f e r (fd , &tx , &rx , 1) ;
r e turn rx ;

Page 64

WERHM – Final Report EE492 May15-23

}

void s p i b u r s t t x (char ∗ tx , char ∗ rx , i n t t x l e n) {
t r a n s f e r (fd , tx , rx , t x l e n) ;

}

void s p i c l o s e () {
c l o s e (fd) ;

}

Page 65

WERHM – Final Report EE492 May15-23

References

[1] R.A. Dalke, C.L. Holloway, P. McKenna, M. Johansson, and A.S. Ali. Effects of reinforced concrete
structures on rf communications. Electromagnetic Compatibility, IEEE Transactions on, 42(4):486–496,
Nov 2000.

[2] Shan Jiang. Optimum wireless power transmission for sensors embedded in concrete. Master’s thesis,
Florida International University, nov 2011.

[3] O. Jonah and S.V. Georgakopoulos. Efficient wireless powering of sensors embedded in concrete via
magnetic resonance. In Antennas and Propagation (APSURSI), 2011 IEEE International Symposium
on, pages 1425–1428, July 2011.

[4] William C. Stone. Electromagnetic signal attenuation in construction materials. NIST Construction
Automation Program Report No. 3, 1997.

[5] Clayborne D. Taylor, Samuel J. Gutierrez, Steven L. Langdon, Kenneth L. Murphy, and III Walton,
William A. Measurement of rf propagation into concrete structures over the frequency range 100 mhz
to 3 ghz. In JeffreyH. Reed, TheodoreS. Rappaport, and BrianD. Woerner, editors, Wireless Personal
Communications, volume 377 of The Springer International Series in Engineering and Computer Science,
pages 131–144. Springer US, 1997.

Page 66

WERHM – Final Report EE492 May15-23

List of Figures

1 System block diagram . 4
2 Wireless Power Transmission . 6
3 Royer Oscillator Circuit . 6
4 Receiver . 7
5 Node encased in concrete after recovery . 9
6 Top view of design for both charging and non-charging enclosures 11
7 Front view of design for non-charging enclosure . 11
8 Front view of design for charging enclosure . 11
9 Charging Chip Circuitry . 12
10 Non-Charging PCB . 13
11 Charging PCB . 13
12 Multisim schematic for the charging PCB. 13
13 Parts List . 14
14 Parts List for Non-Charging Enclosure . 15
15 Parts List for Charging Enclosure . 15
16 Transmitter Part List . 15
17 Packet success rate for different output powers . 16
18 Load Analysis . 17
19 Efficiency . 17
20 Battery life expectancy and current draw . 18
21 Nylon mesh covering sensor opening . 20
22 Locations of sensor openings with 90 degree rotation . 21
23 Air gap between enclosure walls . 22
24 Concept sketch of an alternate way to charge and retrieve data 23
25 Individual Contributed Hours . 25
26 Individual Contributed Hours and Total Time . 25

Page 67

	LIST OF ABBREVIATIONS AND ACRONYMS
	EXECUTIVE SUMMARY
	PURPOSE
	DESIGN REQUIREMENTS
	SUBSYSTEM REQUIREMENTS
	COMMUNICATIONS
	SYSTEM REQUIREMENTS
	ANTENNA

	MICROCONTROLLER
	SYSTEM REQUIREMENTS
	FUNCTIONAL REQUIREMENTS
	NON-FUNCTIONAL REQUIREMENTS

	SENSOR TEMPERATURE/HUMIDITY
	SYSTEM REQUIREMENTS
	FUNCTIONAL REQUIREMENTS
	NON-FUNCTIONAL REQUIREMENTS

	POWER SUPPLY
	BATTERY
	POWER TRANSMISSION
	CHARGING CHIP

	BASE STATION
	SYSTEM REQUIREMENTS
	FUNCTIONAL REQUIREMENTS
	NON-FUNCTIONAL REQUIREMENTS
	DATA EXTRACTION

	ENCLOSURE
	FUNCTIONAL REQUIREMENTS
	NON-FUNCTIONAL REQUIREMENTS

	TESTING
	COMMUNICATIONS
	AIR
	CONCRETE

	POWER
	BATTERY LIFE AND HEALTH

	DATA RETRIEVAL
	ENCLOSURE

	DETAILED DESCRIPTION
	I/O
	INTERFACE
	HARDWARE
	MICROCONTROLLER
	RF TRANSCEIVER
	SENSOR
	FLASH MEMORY
	ENCLOSURE
	CHARGING CHIP

	SOFTWARE SPECIFICATIONS
	SCHEMATICS
	IMPLEMENTATION ISSUES AND CHALLENGES

	PARTS LIST
	PCB PARTS
	ENCLOSURE
	TRANSMITTER FOR CHARGING

	RESULTS
	COMMUNICATION
	CHARGING
	POWER TRANSMISSION
	CHARGING CHIP
	BATTERY LIFE

	ENCLOSURE

	CONCLUSION
	Appendices
	OPERATIONAL MANUALS
	BASE STATION
	CHARGING
	ENCLOSURE

	Alternative Project Plans/Designs
	Other Considerations or Mistakes
	Charging Chip
	RF Charging
	Soldering

	Team Contributions
	CODE
	MAIN PCB CODING
	BASE STATION CODING

	References
	List of Figures

