Wireless Embedded Roadway Health Monitoring System (WERHM)

RF Transceive

MAY15-23: Johnnie Weaver, Mitchell Balke, Brandon Wachtel, Brandon Maier, Christofer Sheafe, Tyler Fish, Trieu Nquyen Advisers: Dr. Daji Qiao, Dr. Jiming Song, Dr. Tie Qiu, Jeramie Vens Client: Dr. Halil Ceylan, Department of Civil, Construction and Environmental Engineering

Problem Statement

Structural health monitoring systems evaluate structures for safety without requiring the presence of an inspector. Implementing such a

Circuit Schematics

Resonant Frequency ~ 2.179 MHz

system without wireless communication becomes too difficult, fragile, and expensive to be feasible. A wireless sensor network makes the system low cost, have quick installation times, and high system reliability.

Requirements

Functional Requirements:

- Wireless communication
- Accurate timestamps
- Low power consumption \Diamond
- Possible recharging system
- Non-Functional Requirements:
- User interface at Base Station
- Easy accessible data collection
- ♦ Safe and easy to use

Ultiboard: WERHM Node

Design Approach

The system was subdivided into two sections: wireless battery charging and communication via RF transceiver. Circuits were created to harvest energy inductively from an external source and to charge a Li-Ion battery which powers the microcontroller. Each node was equipped with a RF transceiver to communicate between one another and the central base station. Because nodes have access to limited power, components were chosen for optimal battery life and software designed with a very low active duty cycle.

-----Charging Circuit

Load Analysis 24 23 **Nover (mN)** 222 212 202 10

As seen above in the load analysis, the optimal resistive load for the receiver circuit is approximately 80-100 ohms. From the analysis, the following graph was created. With a resistive load of 100 ohms, the following efficiency are given with their respective distances.

Efficiency V.S. Distance

Wireless Communication Success Rate

Packet success rate was measured during communication tests through concrete at different output powers. Directed flooding routing protocols allow lower success rates for +7dBm and +5dBm to be acceptable.

Testing Procedure

Enclosure

- Material: ABS Plastic (Acrylonitrile butadiene styrene)
- Two Designs: Charging and Non-Charging
- Exposure: Small opening for sensor for
- indirect concrete measurements
- Mesh: Gore-Tex waterproof membrane that allows the sensor to measure temperature and humidity

Project Applications

WERHM Potential Uses:

- ♦ Airport runways ♦ Interstates and Highways ♦ Bridges
- ♦ Skyscrapers
- This project can be installed in virtually any concrete application.